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Abstract

Objectives

This study profiled the prevalence of extended-spectrum ß-lactamase-producing Escheri-

chia coli (ESBL-EC) in the community and compared their resistome and genomic profiles

with isolates from clinical patients through whole-genome sequencing.

Methods

Fecal samples from 233 community dwellers from Segamat, a town in southern Malaysia,

were obtained between May through August 2018. Putative ESBL strains were screened

and tested using antibiotic susceptibility tests. Additionally, eight clinical ESBL-EC were

obtained from a hospital in the same district between June through October 2020. Whole-

genome sequencing was then conducted on selected ESBL-EC from both settings (n = 40)

for pan-genome comparison, cluster analysis, and resistome profiling.

Results

A mean ESBL-EC carriage rate of 17.82% (95% CI: 10.48%– 24.11%) was observed in the

community and was consistent across demographic factors. Whole-genome sequences of

the ESBL-EC (n = 40) enabled the detection of multiple plasmid replicon groups (n = 28),

resistance genes (n = 34) and virulence factors (n = 335), with no significant difference in
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the number of genes carried between the community and clinical isolates (plasmid replicon

groups, p = 0.13; resistance genes, p = 0.47; virulence factors, p = 0.94). Virulence gene

marker analysis detected the presence of extraintestinal pathogenic E. coli (ExPEC), uro-

pathogenic E. coli (UPEC), and enteroaggregative E. coli (EAEC) in both the community

and clinical isolates. Multiple blaCTX-M variants were observed, dominated by blaCTX-M-27 (n

= 12), blaCTX-M-65 (n = 10), and blaCTX-M-15 (n = 9). The clinical and community isolates did

not cluster together based on the pan-genome comparison, suggesting isolates from the

two settings were clonally unrelated. However, cluster analysis based on carried plasmids,

resistance genes and phenotypic susceptibility profiles identified four distinct clusters, with

similar patterns between the community and clinical isolates.

Conclusion

ESBL-EC from the clinical and community settings shared similar resistome profiles, sug-

gesting the frequent exchange of genetic materials through horizontal gene transfer.

Introduction

The Centers for Disease Control and Prevention (CDC) has classified extended-spectrum ß-

lactamase (ESBL) expression in Enterobacteriaceae as a serious threat to public health due to

limited therapeutic options and challenges in controlling its transmission [1]. The surveillance

of ESBL is complicated by the commensal and hardy nature of Enterobacteriaceae, where

ESBL has been reported not only from the clinical setting but also in asymptomatic commu-

nity dwellers [2–4], wastewater [5, 6], farm animals and pets [7, 8], and even natural environ-

ments [9, 10]. Notably, these nonclinical settings often lack regular antibiotic surveillance and

monitoring, rendering them reservoirs for ESBL and other antibiotic resistance genes which

can potentially supply these resistance determinants to virulent and pathogenic strains.

The successful propagation of ESBL genes has been linked to the hypervirulent strain

Escherichia coli ST131 [11]. Since its emergence in the late 2000s [12, 13], E. coli ST131 gradu-

ally became a major strain causing extraintestinal infections worldwide (e.g., the dominance of

ST131 among isolates causing bacteremia in Southeast Asia [11]). Its rapid emergence is

driven by the successful acquisition of various virulence factors associated with extraintestinal

pathogenic E. coli (ExPEC), such as the iutA aerobactin receptor and papG P fimbrial adhesin

virulence genes [14]. Its role in disseminating ESBL lies in its frequent carriage of plasmid

groups carrying the blaCTX-M gene, which is frequently co-carried with other resistance genes,

particularly aminoglycosides [15, 16]. Additionally, ST131 is also frequently associated with

fluoroquinolone resistance, either through the carriage of plasmid-mediated quinolone resis-

tance (PMQR) genes such as qnrS or quinolone resistance determining region (QRDR) chro-

mosomal mutations, such as gyrA and parC [14, 17]. Nevertheless, ESBL dissemination can

also be carried and disseminated by commensal strains through horizontal gene transfer of

plasmids carrying the ESBL gene [18], as observed in community studies (e.g., [2, 7]).

Regardless of their transmission method, multiple studies have reported the direct trans-

mission of ESBL genes from hospitals into the community [19]. Crucially, the intrafamilial

transmission of ESBL genes has also been reported [20], suggesting the ease of transmission of

extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-EC) among individuals liv-

ing in close proximity. Moreover, the persistence and stable inheritance of plasmids carrying
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ESBL genes, even in the absence of antibiotic selection pressure, has led to the widespread

prevalence of ESBL genes worldwide [21].

Southeast Asia is a high-risk region for ESBL colonization, with multiple studies reporting

ESBL-EC colonization of individuals after visiting the region [22, 23]. Additionally, the South-

east Asian communities have reported some of the highest ESBL colonization rates globally,

reaching up to 75.1% [24]. Despite the known endemicity of ESBLs in the Southeast Asian

community, there is a lack of comparative genomic analysis of community and clinical isolates,

resulting in a gap in our understanding of the relationship between the commensal ESBL-pro-

ducing isolates in the community and those causing extraintestinal infections in the region.

Unveiling such a link is necessary to inform proper surveillance and antibiotic regulation poli-

cies to curb the further spread of ESBL in the region.

In Malaysia, ESBL colonization is often reported in the clinical setting [25–28], mainly in

studies of a large regional cohort [29–31], with some published articles on farm animals [32],

foods [33], and the environment [6, 34]. A comparison between ESBL-producing Klebsiella
pneumoniae isolated from a swine and a clinical patient was recently reported [35]. However,

the epidemiology of the community-acquired ESBL is largely unknown, as there is a lack of

community-based carriage studies. We aimed to address this gap by determining the coloniza-

tion rate of ESBL-EC from community dwellers in Malaysia. Fecal samples obtained from a

community cohort in Segamat, Malaysia, were screened for ESBL-EC. Clinical ESBL-EC iso-

lates from the local hospital were also procured. Afterwards, the community and clinical iso-

lates were compared based on their genome and resistomes through whole-genome

sequencing.

Methods

Community recruitment

The community recruitment protocol for this study has been described before [36]. Briefly,

this study involved the community residents of Segamat, a district located in southern Johor

state in peninsular Malaysia. From May through August 2018, independent fecal samples were

obtained from 233 community dwellers from 110 households. A written consent form was

obtained from each participant. Individuals below the age of 18 provided their written consent

forms together with their guardians. This study was approved by the Monash University

Human Research Ethics Committee (MUHREC) project number 1516, which adheres to the

Declaration of Helsinki.

Isolation of 3GCR-resistant Escherichia coli from the community

Within 24 h of expulsion, each fecal sample was diluted 1:10 in buffered peptone water (Oxoid)

and spread plated on MacConkey agar (Oxoid) laced with two mg/L cefotaxime (Gold Biotech-

nology), and then incubated overnight at 37˚C. From each sample, one presumptive E. coli iso-

late was randomly picked using Harrison’s disk method. The identity was confirmed through

their signature metallic green sheen morphology on Eosin Methylene Blue Agar.

Phenotypic profiling of ESBL-producing Escherichia coli from the

community

The ESBL phenotypic profile of the isolates was determined with the combination disk test

according to the Clinical Laboratory and Standards Institute (CLSI) 2018 guidelines [37].

Briefly, an isolate was regarded as an ESBL producer if the inhibition zone of either cefotaxime

(CTX) or ceftazidime (CAZ) (30 μg, Oxoid) combined with clavulanic acid (1 μg/mL) was�5
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mm compared to CTX or CAZ without clavulanic acid. The phenotypic profiles of Klebsiella
pneumoniae ATCC700603 and E. coli ATCC25922 were used as the positive and negative con-

trol, respectively. Afterwards, the antibiotic susceptibility profiles were determined using disk

diffusion test against aminoglycoside (amikacin, AK30), ß-lactam-inhibitors combination

(ampicillin-sulbactam, SAM20; piperacillin-tazobactam, TZP110), carbapenem (imipenem,

IMP10), 1st and 4th-generation cephalosporin (cefazolin, KZ30; cefepime, FEP30), fluoroquin-

olones (ciprofloxacin, CIP5; nalidixic acid, NA30), sulfonamide combination (co-trimoxazole,

SXT25), nitrofurantoin (F300), and tetracycline (TE30). E. coli ATCC25922 was used as the

negative control. Isolates with intermediate or resistant phenotypes were classified as non-sus-

ceptible. Multidrug resistance was defined as non-susceptibility towards >3 antibiotic classes

[38].

Procurement of clinical ESBL-producing Escherichia coli
Hospital Segamat is the primary tertiary care provider in the Segamat district, where the com-

munity samples were collected [39]. ESBL-producing E. coli isolated from patients admitted

from June through October 2020 were obtained from the pathology department. The study

was approved by the Malaysian Medical Review and Ethics Committee (MREC, project ID

NMRR-19-2532-50266) and MUHREC (project number 20722).

Whole-genome sequencing of ESBL-producing Escherichia coli
A total of 40 ESBL-producing Escherichia coli, comprising 32 community and 8 clinical iso-

lates, were further analyzed through whole-genome sequencing. The 32 community isolates

were chosen based on their multidrug resistance profiles, while the eight clinical isolates were

all the ESBL-EC isolated from Hospital Segamat during the sample collection period (June-

October 2020). DNA was extracted using the QIAamp DNA Stool Mini Kit (Qiagen) and

short-read sequenced using Illumina Miseq with a 2 × 150 bp paired-end configuration, giving

1,444,947 ± 919,310 mean raw read depths. All raw sequence data were trimmed to remove

low-quality sequences and sequencing adapters using fastp version 0.20.1 [40], yielding a final

count of 1,418,514 ± 913,627 mean reads post-trimming. BUSCO version 5.1.2 [41] was then

run on the assembled sequence to confirm the completeness of orthologs from the sequence

data (S1 Fig).

The isolates were sequence typed in silico using the Achtman scheme against the PubMLST

database, conducted in SRST2 version 0.2.0 [42]. SRST2 was also used to determine the antibi-

otic resistance genes, plasmid replicon types, and virulence factors carried using the ’ARGan-

not_r3.fasta’, ’plasmidFinder.fasta’, and VFDB databases, respectively. The SRST2-curated

databases are accessible through its repository at https://github.com/katholt/srst2/tree/master/

data/. Chromosomal point mutations were identified using ResFinder version 4.0 [43]. ST131

subtype was analyzed using the ST131Typer version 1.0.0, available at https://github.com/

JohnsonSingerLab/ST131Typer.

The antibiotic susceptibility, antibiotic resistance genes, multilocus sequence typing

(MLST), and plasmid replicon profiles of the isolates were plotted and clustered using the hier-

archical clustering method in the R package ComplexHeatmap version 2.4.3 [44]. Only MLST

profiles with >1 count were included in the heatmap.

Pan-genomic comparison of Segamat-derived ST131 isolates between

settings and with regional variants

We further analyzed the presence of clonal transmission of ESBL-producing Escherichia coli in

Segamat. The whole-genome sequences from each isolate were assembled using Unicycler
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version 0.4.8 [45] and annotated using Prokka version 1.14.6 [46]. Pan-genome comparison

was conducted using Roary version 3.13.0 [47]. The phylogenomic relationship was built using

an approximately maximum likelihood tree using FastTree version 2.1.10 with the -gtr and -nt

command [48], explored using Phandango version 1.3.0 [49], and visualized using the R pack-

age ggtree version 2.2.4 [50]. Parallelization of the pipeline utilized the GNU parallel platform

[51].

Additionally, ST131 isolates (n = 5) were further analyzed through pan-genome compari-

son with publicly available ST131 sequences, focusing on those from the Southeast Asian

region. We searched the Scopus database using the following search strategy: TITLE-ABS-KEY

(("Escherichia�" OR "coli�") AND ("genome�" OR "sequence�") AND ("�131�") AND

("Malaysia�" OR "Indonesia�" OR "Singapore�" OR "Thailand�" OR "Vietnam�" OR

"Philippine�" OR "Myanmar�" OR "Burm�" OR "Cambodia�" OR "Lao�" OR "Brunei�" OR

"Timor�" OR "Chin�" OR "Korea�" OR "Japan�")) AND (LIMIT-TO (AFFILCOUNTRY,

"Thailand") OR LIMIT-TO(AFFILCOUNTRY, "Singapore") OR LIMIT-TO (AFFILCOUN-

TRY, "Indonesia") OR LIMIT-TO (AFFILCOUNTRY, "Malaysia") OR LIMIT-TO (AFFIL-

COUNTRY, "Cambodia") OR LIMIT-TO (AFFILCOUNTRY, "Myanmar") OR LIMIT-TO

(AFFILCOUNTRY, "Viet Nam")). A total of 23 studies were filtered, out of which sequence

data from four studies were eligible for further analysis (S1 and S2 Tables). Out of the 670 pro-

cured sequences, 220 isolates were confirmed as ST131 using the sequence typing method

described earlier.

Statistical analyses

All statistical analyses were conducted in R version 4.0.5. Mixed model analysis was conducted

to determine the factors significantly associated with ESBL carriage and the ESBL prevalence

rate, adjusted for household clustering using the R package lme4 version 1.1–23 [52]. Ordina-

tion analysis was conducted using the R package vegan version 2.5–6 [53] and ape version 5.4–

1 [54]. Correlation analyses were conducted using the R package corrplot version 0.90 [55].

Figures and plots were made using the R package ggplot2 version 3.3.3 [56].

Results

Community ESBL colonization was prevalent across demographics and

comorbidities

A total of 233 fecal samples from 110 households in Segamat District in southern Malaysia

were screened for the presence of ESBL-EC. The subjects were aged 43.65 ± SD 19.89 and were

approximately equally distributed between sex (female, n = 127, 54.51%, χ2 test, p = 0.17) and

different ethnicities (χ2 test, p = 0.45, Table 1). The most frequent occupations were home-

makers (n = 64), agricultural workers (n = 43) and children (individuals <18 and not working,

n = 33), with 42 subjects reporting unemployment.

A total of 15 participants reported having a surgery in the year prior to sampling, with den-

tal surgery being the most frequent (n = 6, S2A Fig). The most frequent comorbidities were

hypertension (n = 54), followed by high blood cholesterol (n = 28) and diabetes (n = 26) (S2B

Fig). A total of 45 subjects were on active medication, most commonly with simvastatin

(n = 17), amlodipine (n = 17), and metformin (n = 13) (S2C Fig).

Growth of cefotaxime-resistant E. coli was observed in isolates from 103 participants. Out

of these, 44 participants were positive for ESBL-producing E. coli (ESBL-EC) based on the

combination disk test. After accounting for the household clustering of the samples, this

equates to a 17.82% (Linear mixed model, 95% CI: 10.48%– 24.11%) ESBL-EC carriage rate.
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Risk factor analysis did not reveal any significant association between any demographic fac-

tors with ESBL colonization (Table 1, Likelihood ratio test (LRT), p>0.05). The three most fre-

quent comorbidities (hypertension, n = 54; cholesterol, n = 28; diabetes, n = 26) and surgical

history were also not associated with ESBL (LRT, p>0.05). Similarly, the three most frequently

used drugs (simvastatin, n = 17; amlodipine, n = 17; metformin, n = 13) and being on any

active medications (n = 45) were also not significantly associated with ESBL colonization of

the human gut (LRT, p>0.05).

Antibiotic susceptibility tests demonstrated the relatively higher and lower susceptibility of

ESBL-EC towards ceftazidime (CAZ30) and cefepime (FEP30), respectively (Fig 1). A total of

90.29% (n = 93/103) of the cefotaxime-resistant E. coli were multidrug-resistant, with ESBL-EC

being non-susceptible to significantly (Welch two Sample t-test, p<0.001) more antibiotics

(mean 6.23 ± 1.10) compared to ESBL-negative isolates (5.29 ± 1.17). All of the tested isolates

were susceptible to IPM10.

Table 1. Demographic distribution of Segamat community dwellers (n = 233) recruited into this study.

Factor Values ESBL-positive ESBL-negative LRT

n % n %

Age 10–25 15 0.34 43 0.23 0.13

26–47 12 0.27 47 0.25

48–59 11 0.25 47 0.25

60–83 6 0.14 51 0.27

Sex Female 28 0.64 99 0.52 0.28

Male 16 0.36 90 0.48

BMI Underweight 4 0.09 20 0.11 0.77

Normal 16 0.36 83 0.45

Overweight 12 0.27 45 0.24

Obese 12 0.27 37 0.20

Ethnicity Chinese 11 0.25 58 0.31 0.48

Indian 9 0.20 46 0.24

Malay 10 0.23 44 0.23

Jakun 14 0.32 41 0.22

Occupation Agricultural 11 0.26 32 0.17 0.48

Children 7 0.16 26 0.14

Homemaker 13 0.30 51 0.27

Others 3 0.07 26 0.14

Service 4 0.09 17 0.09

Unemployed 5 0.12 37 0.20

Education No formal education 2 0.05 15 0.08 0.44

Did not complete primary school 9 0.20 50 0.27

Primary school 10 0.23 45 0.24

Penilaian Menengah Rendah (Lower Secondary Assessment) 15 0.34 33 0.18

Sijil Pelajaran Malaysia (Fifth form secondary school) 6 0.14 35 0.19

Diploma 1 0.02 5 0.03

Degree 1 0.02 4 0.02

Age was grouped based on quartiles. The occupation was classified based on the International Standard Classification of Occupations. Likelihood ratio test (LRT) p-

value measures the significance of each factor to ESBL carriage. Blank data was removed from each variable before analysis.

https://doi.org/10.1371/journal.pone.0265142.t001
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Similar genotypic and phenotypic profiles across ESBL-EC isolated from

the community and clinical setting

Out of the 44 ESBL-EC identified, 32 were selected based on their multidrug resistance profile

for further analysis. Through whole-genome sequencing, we compared the genotypic and

Fig 1. Antibiotic susceptibility profile of independent Escherichia coli isolated from Segamat community dwellers against 13 antibiotics, sorted based

on ESBL phenotype. Abbreviations: TZP110 = Piperacillin-Tazobactam (110 μg); TE30 = Tetracycline (30 μg); SXT25 = Sulfamethoxazole-Trimethoprim

(25 μg); SAM20 = Ampicillin-Sulbactam (20 μg); NA30 = Nalidixic Acid (30 μg); KZ30 = Cefazolin (30 μg); IPM10 = Imipenem (10 μg); FEP30 = Cefepime

(30 μg); F300 = Nitrofurantoin (300 μg); CTX30 = Cefotaxime (30 μg); CIP5 = Ciprofloxacin (5 μg); CAZ30 = Ceftazidime (30 μg); AK30 = Amikacin

(30 μg).

https://doi.org/10.1371/journal.pone.0265142.g001
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phenotypic profiles of these isolates with eight clinical ESBL-EC isolated from independent

patients admitted to the Segamat district hospital from June through October 2020 (mean age

58.75 ± 8.48, 62.5% female). These isolates were collected from various body sites, with urine

(n = 3) and blood (n = 2) being the most common isolation source (Table 2).

Thirty-four unique resistance genes were detected from all the isolates, which expressed

resistance to 11 antibiotic classes (S3 Table). The core genes ampC and ampH were universally

carried by all E. coli isolates, but rarely conferred clinically relevant resistance [57]. Similarly,

the universal carriage of mrdA reflected its role as an essential cell wall biosynthesis gene in E.

coli [58]. Apart from this, tetA was the most frequently carried resistance gene (n = 31/40), fol-

lowed by the blaCTX-M-9 family (n = 22/40), which comprised blaCTX-M-27 (n = 12) and

blaCTX-M-65 (n = 10). Of note, colistin resistance was detected in two isolates, each carrying the

mcr1 and mcr3 gene, respectively. Among the PMQR genes, only qnrS was detected, which

was carried by 37.5% (n = 15/40) of the isolates. No carbapenemase resistance genes were

detected. Meanwhile, 28 unique plasmid replicon groups were detected, with each isolate car-

rying a mean of 4.45 ± 2.37 plasmid groups. FII was the most commonly encountered (n = 33/

40), followed by FIB (n = 26) and I1 Alpha (n = 17). Additionally, a total of 335 virulence fac-

tors were observed (mean carriage 161.3 ± 26.21). Notably, no significant differences in the

number of antibiotic resistance genes, plasmid replicon groups, and virulence factors carried

were detected between the community and clinical isolates (Welch Two Sample t-test,

p>0.05).

Analyzing the presence of five virulence gene markers for ExpEC strains: papA/papC, afa/

dra, sfa/foc, iutA, and kps [59], five of eight (62.5%) clinical isolates were classified as ExPEC,

while 28.1% (n = 9/32) of the community isolates were ExPEC (S3 Fig). Additionally, virulence

gene markers for uropathogenic E. coli (UPEC) based on the presence of eight marker genes

(fyuA, yfcV, chuA, vat, focA, pap, sfa, cnf) [60], enteroaggregative E. coli (detection of aatA and

aggR [60]), and atypical enteropathogenic E. coli (EPEC-atypical, detected carriage of the eae
gene [61]), were also frequently detected from the isolates, regardless of their setting. We fur-

ther analyzed the 335 detected virulence factors to identify the top differentially abundant

genes between the community and clinical isolates (S4 Fig). The clinical isolates had a higher

carriage of iutA, iuc, sit, and hly virulence genes. Meanwhile, community isolates more fre-

quently carried the esp gene. Despite these differences, 76.7% (n = 257/335) of these virulence

genes were detected from isolates in both settings.

We analyzed whether antibiotic resistance gene carriage was associated with any resistance

phenotypes based on antibiotic susceptibility profiles (S5 Fig). Phenotypic resistance towards

CIP5 (ciprofloxacin) exhibited the most significant association (p<0.05) with antibiotic resis-

tance genes (n = 9), followed by SXT25 (trimethoprim-sulfamethoxazole) (n = 7) and CAZ30

Table 2. Demographic profile and clinical characteristics of eight ESBL-producing Escherichia coli isolated from

clinical patients admitted to the Segamat district hospital.

ID Age Sex Source

40 53 F tracheal aspirate

15 66 M NA

16 55 F urine

17 72 F blood

18 58 F urine

39 44 F urine

14 61 M blood

38 61 M NA

https://doi.org/10.1371/journal.pone.0265142.t002
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(ceftazidime) (n = 6). Notably, the correlation direction differed across antibiotic resistance

genes belonging to the same groups. For example, carriage of aminoglycoside resistance genes

aadA and aadA4/5 were positively and negatively correlated with non-susceptibility towards

ciprofloxacin, respectively. Additionally, blaCTX-M-1 and blaCTX-M-9 families were positively

and negatively associated with CAZ30 non-susceptibility, respectively. Apart from this, several

genotypic-phenotypic associations were consistent across antibiotic and resistance gene classes

(e.g., tetA and TE30, dfrA7 and SXT25).

Chromosomal point mutations in the QRDR genes were detected in 57.5% (n = 23/40) iso-

lates. All these isolates had mutations in the gyrA gene, while 12 and 8 exhibited mutations in

the parC and parE genes, respectively (S6 Fig). A total of 96.4% (n = 27/28) isolates showing

non-susceptibility to fluoroquinolone possessed at least one PMQR or QRDR mutation. How-

ever, PMQR or QRDR mutations were also frequently detected among fluoroquinolone-sus-

ceptible isolates (75.0%, n = 9/12).

Similar blaCTX-M distribution between the community and clinical isolates

blaCTX-M-65 (n = 10) was the most frequently observed blaCTX-M variant from the community

members, followed closely by blaCTX-M-27 (n = 9) and blaCTX-M-15 (n = 7) (Fig 2A). No signs of

geographical clustering were observed, with all variants distributed throughout the study area

(S7 Fig). Meanwhile, three blaCTX-M variants were observed among the clinical isolates,

namely blaCTX-M-55 (n = 3), blaCTX-M-15 (n = 2), and blaCTX-M-27 (n = 3). No isolates carried

more than a single blaCTX-M gene.

A variety of strain types was observed in both settings, with ST131 (n = 3/8) and ST155

(n = 4/32) being the most frequently observed ST among the clinical and community isolates,

respectively (Fig 2B). ST131 was also detected among the community isolates (n = 2). Further

typing revealed that all clinical ST131 isolates belonged to Clade A with the O16:H5 serotype,

while the community ST131 isolates were of the C1 clade with the serotype O25b:H4. The dis-

tinction between ST131 from the clinical and community settings was further confirmed

through SNP-based pan-genome comparison with publicly available ST131 (n = 220), which

revealed the segregation of the community and clinical isolates on different clades (Fig 3).

Despite this, all isolates still clustered closely with clinical isolates from other geographical

regions.

Within Segamat itself, SNP-based pan-genome comparison revealed the clustering of the

isolates based on their MLST profile (Fig 4). Interestingly, some ST profiles are consistent with

the types of blaCTX-M carried. For example, all ST131 isolates carried blaCTX-M-27, while ST155

had the blaCTX-M-65 gene. However, the carriage of blaCTX-M did not seem to drive the overall

antibiotic resistance profiles of the isolates. This observation was revealed through a cluster

analysis based on the antibiotic resistance genes and susceptibility profile, as well as plasmid

groups (S4 Fig). Notably, four distinct clusters were observed, mainly distinguished by the

types of aminoglycoside, phenicols, and fosfomycin resistance genes carried. For example, the

aminoglycoside resistance genes strA, strB and aadA4/5 were frequently co-carried with the

trimethoprim resistance gene dfrA7. Meanwhile, the aminoglycoside resistance gene aadA,

aac3, aph4 and aph3 were commonly co-carried with dfrA. Notably, the community and clini-

cal isolates exhibited similar profiles and co-clustered together. Ordination of the isolates

using the Jaccard distance further confirmed this observation (Fig 5).

Discussion

This study investigated the prevalence of fecal colonization with ESBL-EC from 233 commu-

nity dwellers in the Segamat district, and compared their profiles with clinical ESBL-EC
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isolated from patients in the same district. We report for the first time the association between

ESBL-EC isolated from the asymptomatic community and a co-located healthcare setting in

Malaysia. Isolates from both settings shared similar resistance genes, susceptibility profiles and

carried plasmid groups, suggesting that horizontal gene transfer is a dominant dissemination

route for ESBL and other antibiotic resistance genes in the region. Additionally, we believe this

to be the first report of ESBL colonization among community dwellers in Malaysia.

Fig 2. Distribution of blaCTX-M variant (a) and MLST (b) carried by ESBL-producing E. coli isolated from Segamat clinical and community samples. MLST

was typed using the Achtman scheme.

https://doi.org/10.1371/journal.pone.0265142.g002
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The 17.82% prevalence rate of ESBL-EC among community dwellers was similar to the

global average of 16.5% reported in a recent meta-analysis [24]. However, it was lower than the

South-East Asia mean of 27%, but still almost three-fold higher than Europe [24]. Within

Southeast Asia, the prevalence rate reported in this study for Malaysia was even lower than

neighbouring countries: Singapore (26.2%) [3] and Thailand (52.1%) [2].

Age has been reported to be a risk factor for ESBL-associated infections [62, 63]. Addition-

ally, ESBL colonization has also been associated with demographic factors such as ethnicity

[64] and education level [65]. New Zealanders of South Asian descent were more likely to

travel to South Asia, a hotbed for blaCTX-M-15 [64]). Better-educated individuals in China were

more susceptible to ESBL colonization, likely due to a higher likelihood of consuming antibiot-

ics [65]. Our failure to associate ESBL colonization with age and other demographic parame-

ters indicates the endemicity of ESBL in the community. The lack of association between ESBL

and other comorbidities, as well as surgical history, also reinforced this observation. This situa-

tion might have resulted from the lack of antibiotic regulation enforcement in the region [66].

A previous report has postulated the lack of antibiotic regulation enforcement as a factor driv-

ing similar ESBL profiles between animal and clinical isolates in Malaysia [35]. Moreover, plas-

mids carrying ESBL have been reported to be persistent and could be stably inherited despite

Fig 3. SNP-based pan-genome comparison of ESBL-producing Escherichia coli ST 131 from Segamat (n = 5) with public ST131 sequences

(n = 220). The clade containing the community ST131 isolates from Segamat was highlighted in turquoise, while the Segamat clinical ST131 isolates

were mapped in the clade highlighted in purple.

https://doi.org/10.1371/journal.pone.0265142.g003
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Fig 4. SNP-based pan-genome comparison of ESBL-producing Escherichia coli isolated from Segamat community members (n = 32) and hospital

patients (n = 8), annotated with their setting, MLST, and blaCTX-M variant carried. The ST131 clade is highlighted in turquoise.

https://doi.org/10.1371/journal.pone.0265142.g004
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the absence of antibiotic selection pressure [21, 67]. The high prevalence of ESBL in the com-

munity might reflect the successful propagation of plasmids carrying ESBL and other antibi-

otic resistance genes introduced from past events, reinforced by the lack of antibiotic

regulation in the region.

A high proportion of the clinical isolates carried virulence genes that have been linked to

ExPEC strains. The iutA gene encodes for the aerobactin receptor, established as a marker

Fig 5. Principal coordinate analysis with Jaccard distance based on the isolates’ antibiotic resistance genes, susceptibility profiles, and carried

plasmid groups.

https://doi.org/10.1371/journal.pone.0265142.g005
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gene for ExPEC [59]. Additionally, the frequent detection of iucABCD, which encodes for

aerobactin and has been associated with Avian Pathogenic E. coli (APEC) [68] and UPEC [69],

suggests their role in driving the pathogenicity of the clinical isolates in Segamat. The frequent

detection of hlyCABD operons, encoding α-hemolysins, was also in line with reports suggest-

ing their association with UPEC [70]. Meanwhile, the community isolates frequently carried

Type III secretion system effector-like protein (espL4, espX4, espX5, espX1, espR1), associated

with Shiga-Toxin producing E. coli (STEC) [71] and the enterohemorrhagic E. coli (EHEC)

[61]. However, the Shiga toxin gene itself was absent from the isolates. This observation was

confirmed by the frequent classification of isolates from both the community and clinical set-

tings into various pathogroups, suggesting their ability to readily cause infections, highlighting

the importance of proper antibiotic surveillance and control on the asymptomatic community.

A variety of STs was detected from the community members, reflecting the vast diversity of

bacterial strains which populate the gastrointestinal tract [72, 73]. In contrast, clinical isolates

were often dominated by a few pathogenic and hypervirulent ST, indicating the occurrence of

a clinical outbreak [74–76]. The absence of a clonal relationship between the community and

clinical isolates in our study is expected due to the different nature and isolation sources of the

isolates. The fecally derived community isolates were commensal in nature compared to the

clinical pathogenic isolates which were procured from extraintestinal infection sites. Neverthe-

less, the observed similarity in the resistome profiles of both the commensal community iso-

lates and the pathogenic clinical isolates suggests the frequent exchange of genetic materials

between isolates of both settings. This exchange can occur when contamination occurs

through the fecal-oral route, resulting in the transmission of ESBL-producing isolates between

individuals [19, 77] and can potentially lead to the exchange of genetic materials between com-

mensal and pathogenic strains, highlighting concerns on the role of commensal isolates in the

gastrointestinal tract as a reservoir for ESBL and other antibiotic resistance genes. Regardless,

this study is not equipped to unveil the directionality of this association, warranting further

study.

Although ST131 isolates were observed from both the community and clinical settings, they

belonged to different clades and serotypes. Despite this, ESBL-EC isolates from the community

and clinical settings frequently shared similar antibiotic susceptibility, plasmid, and resistance

genes profiles. Our observation suggests the long-term stability and persistence of the mobile

genetic elements carrying ESBL and other antibiotic resistance determinants in the region.

All ST131 in our study carried the blaCTX-M-27, similar to the dominant ST131 clone

reported in Japan. However, this result is incongruent with recent findings by Chen et al. [11],

who observed the dominance of ST131 SEA-C2 clade associated with blaCTX-M-15 in Southeast

Asian isolates causing bacteremia. Nevertheless, the low sample size observed in our cohort

was inconclusive.

The non-susceptibility of isolates carrying blaCTX-M-9 to ceftazidime has been reported [78],

likely explaining the non-susceptibility of isolates carrying the blaCTX-M-9 family gene towards

ceftazidime. Additionally, all tested isolates only carried a single blaCTX-M gene, indicating the

carriage of blaCTX-M-1 and blaCTX-M-9 on different plasmid groups belonging to the same

incompatibility groups. Their carriage on plasmids of the same incompatibility group likely

explains the absence of co-carriage of both blaCTX-M genes in Segamat.

Despite the frequent detection of aminoglycoside resistance genes, the susceptibility rates of

the tested ESBL-EC against amikacin remains high. The observed susceptibility towards ami-

kacin is consistent with the literature, where ESBL-producing isolates from Malaysia are gener-

ally susceptible towards amikacin (e.g., 94.6% [79], 98% [80] and 100% [32] susceptibility

rate). Additionally, the resistance of amikacin against most aminoglycoside-modifying genes is

commonly reported (as reviewed in [81]). Notably, amikacin resistance is reported to be
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mediated by aminoglycoside genes such as aphA6 [82], armA [83], aacA4 and aacA7 [84],

none of which were detected in the Segamat cohort.

Resistance towards fluoroquinolone antibiotics can be mediated by PMQR and QRDR [85,

86]. Fluoroquinolone resistance was highly variable among ESBL producers in Malaysia, rang-

ing from 18% to 71% [32, 80, 87]. Previously, a study on ciprofloxacin-resistant K. pneumoniae
identified the gyrA and parC QRDR mutations as the driver of fluoroquinolone resistance in

Malaysia [79]. This observation was also accurate for our cohort, with gyrA and parC chromo-

somal mutations frequently detected. The PMQR gene qnrS was also frequently detected from

the tested ESBL isolates. The combination of PMQR and QRDR genes seemed to drive fluoro-

quinolone resistance in Segamat, although a large proportion of fluoroquinolone-susceptible

isolates also carried at least one PMQR/QRDR mutation. This observation might have implied

the lack of PMQR expression, as reported before. Regardless of their susceptibility, fluoroquin-

olone-susceptible isolates carrying a single qnr gene have been demonstrated to rapidly gain

fluoroquinolone resistance upon challenge with fluoroquinolone antibiotics [88], presenting a

concern despite their susceptibility.

Carbapenem resistance is an emerging global concern partly due to its increased frequency

of usage to treat ESBL-related infections [89], including in the Southeast Asian region [90].

Although carbapenem resistance was not detected from the Segamat cohort, this might be

related to the low positivity rate of carbapenem resistance, ranging from 3.5–4.1% in Malaysia

[90]. Nevertheless, the absence of carbapenem resistance in Segamat confirms the preservation

of carbapenem’s efficacy as the last line antibiotic in Segamat. Despite this, a long-term study

is warranted to gauge the emergence of carbapenem resistance in Segamat.

The different resistome clusters observed in this study seem to be driven by the aminoglyco-

side and phenicol resistance genes. This observation implies multiple co-carriage of different

resistance genes, in particular those conferring resistance to aminoglycosides and phenicols, in

plasmids of the same incompatibility groups. The multidrug resistance observed concurred

with previous findings linking the ESBL-carrying plasmids with co-carriage of other resistance

genes [91], although the type blaCTX-M carried in our cohort did not explain the cluster differ-

ences. The lack of dual carriage of blaCTX-M likely indicates that blaCTX-M variants were carried

in plasmids in identical incompatibility groups, warranting further investigations into the plas-

mid-blaCTX-M relationship in Segamat. Additionally, the detection of mcr3 warrants further

research on their potential impact on colistin resistance in Segamat considering its role as a

last-line antibiotic [92]. Moreover, the observed correlation between IncHI2 and IncHI2A

with mcr3 warrants further plasmid-gene investigation. Although we did not study the resis-

tome profile of the non-ESBL isolates, it is worth noting that even ESBL-negative isolates had a

mean non-susceptibility towards 5.29 ± 1.17 antibiotic classes, suggesting the endemicity of

antibiotic resistance beyond ESBL in the Southeast Asian region.

Malaysia is a prime destination for international tourists, recording more than 26 million

tourist arrivals in 2019, worth MYR86.14 billion in tourist receipts [93]. Additionally, 239.1

million domestic tourists were recorded in the year 2019 [94]. These data suggest the risk of

ESBL dissemination both within and beyond the Southeast Asian region, potentially aggravat-

ing the ongoing global ESBL crisis once travel resumes after easing of restrictions imposed by

the current COVID-19 pandemic.

This study is not free from limitations. The relatively low overall sample size might have

hampered the detection of demographic risk factors of ESBL colonization. Additionally, due to

the ethics requirements, we did not obtain information on patient admission dates, which

hampered the classification of the clinical isolates into either hospital or community-acquired.

Nevertheless, these limitations do not void the observed resistome similarity between the com-

munity and clinical isolates.

PLOS ONE Pan-genome and resistome analysis of ESBL-producing Escherichia coli from multiple settings in Malaysia

PLOS ONE | https://doi.org/10.1371/journal.pone.0265142 March 10, 2022 15 / 23

https://doi.org/10.1371/journal.pone.0265142


Our study compared fecal ESBL-EC from the community with clinical ESBL-EC derived

from various extraintestinal environments. The inherent limitation of this design was the non-

comparability of the mostly commensal community isolates with the pathogenic clinical iso-

lates, limiting information on the clonal relatedness of isolates from both settings. However,

our study design was able to directly associate the high ESBL colonization rate in the commu-

nity with ESBL-associated infections in the clinical setting.

Our observation was limited to the human samples (i.e. clinical and the community). As

such, we were unable to elucidate the presence of ESBL in settings such as food and animal

farms. Additionally, the reliance on only short-read sequence data means that plasmid assem-

bly data were unavailable, which hindered the elucidation of the relationship between the dif-

ferent blaCTX-M variants and plasmid types. In silico plasmid analysis of short-read sequences

(e.g. plasmidSpades) was ineffective given the low copy number of plasmids carrying ESBL

[95]. The high frequency of plasmid types and resistance genes detected also complicated the

pairwise correlation analysis.

Our study design did not account for the presence of ESBL genes which might have been

phenotypically masked due to the overexpression of AmpC, which is not susceptible to the ß-

lactam/ß-lactam inhibitor combination [96]. As a result, the prevalence rate of ESBL coloniza-

tion reported in this study might be lower than the actual colonization rate of ESBL in

Segamat.

Additionally, the cross-sectional nature of our study was insufficient to account for the

resistome dynamics both in the community and clinical settings. Moreover, the lack of tempo-

ral sampling further hampers our ability to track the transmission dynamics of ESBL in the

region. Despite these caveats, our result still provides a robust analysis of the community resis-

tome profiles and hints at community-clinical transmission of ESBL.

We profiled the prevalence of ESBL-EC in the community and hospital settings in southern

Malaysia. We observed similar profiles between the community and clinical isolates, based on

the types of plasmids, antibiotic resistance genes, and virulence factors carried, implying the

frequent exchange of genetic materials through horizontal gene transfer between the two set-

tings. Despite a one-year sampling gap between the community and clinical isolates, the simi-

larity in profiles suggests the persistence and stable inheritance of these antibiotic resistance

determinants. A comprehensive multi-year carriage study is warranted to capture the temporal

trend of transmission and devise better public health measures to curb the transmission of

antibiotic resistance.
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