1,762 research outputs found

    High-fidelity view of the structure and fragmentation of the high-mass, filamentary IRDC G11.11-0.12

    Get PDF
    Star formation in molecular clouds is intimately linked to their internal mass distribution. We present an unprecedentedly detailed analysis of the column density structure of a high-mass, filamentary molecular cloud, namely IRDC G11.11-0.12 (G11). We use two novel column density mapping techniques: high-resolution (FWHM=2", or ~0.035 pc) dust extinction mapping in near- and mid-infrared, and dust emission mapping with the Herschel satellite. These two completely independent techniques yield a strikingly good agreement, highlighting their complementarity and robustness. We first analyze the dense gas mass fraction and linear mass density of G11. We show that G11 has a top heavy mass distribution and has a linear mass density (M_l ~ 600 Msun pc^{-1}) that greatly exceeds the critical value of a self-gravitating, non-turbulent cylinder. These properties make G11 analogous to the Orion A cloud, despite its low star-forming activity. This suggests that the amount of dense gas in molecular clouds is more closely connected to environmental parameters or global processes than to the star-forming efficiency of the cloud. We then examine hierarchical fragmentation in G11 over a wide range of size-scales and densities. We show that at scales 0.5 pc > l > 8 pc, the fragmentation of G11 is in agreement with that of a self-gravitating cylinder. At scales smaller than l < 0.5 pc, the results agree better with spherical Jeans' fragmentation. One possible explanation for the change in fragmentation characteristics is the size-scale-dependent collapse time-scale that results from the finite size of real molecular clouds: at scales l < 0.5 pc, fragmentation becomes sufficiently rapid to be unaffected by global instabilities.Comment: 8 pages, 8 figures, accepted to A&

    A New Look at the European Economic Community Directive on Insider Trading

    Get PDF
    On 13 November 1989, the European Council passed a directive on the regulation of insider trading. This legislation is designed to coordinate the various laws of the European Economic Community states and to encourage investor confidence in their securities markets. In analyzing the directive, the author proposes the United States experience in the regulation of insider trading as a model for the efforts of the EEC. Considering both the strengths and weaknesses of the United States experience, the author describes the United States shift in emphasis from the regulation of individuals to the regulation of institutions. This shift reflects the United States realization that no supervisory body can adequately regulate insider trading without the help of institutions. The EEC, confronted with a variety of marketplace configurations and a relative absence of strong regulatory bodies, could benefit from regulation of institutions as well. The author concludes that while the EEC has taken an important step toward regulating insider trading with its insider trading directive, the EEC could enhance its efforts to curtail insider trading by following the United States emphasis on the regulation of institutions and by the strengthening of penalties

    Power Spectrum Analysis of Polarized Emission from the Canadian Galactic Plane Survey

    Full text link
    Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization dataset at 1.4 GHz covering an area of 1060 deg2^2. The data analyzed are a combination of data from the 100-m Effelsberg Telescope, the 26-m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from ℓ≈60\ell \approx 60 to ℓ≈104\ell \approx 10^4 and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at b=9∘b= 9^{\circ}, associated with the disk-halo transition in a 15∘^{\circ} region around l=108∘l=108^{\circ}. Localized variations in the index are found toward HII regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by Hα\alpha emission) indicating that the thermal emission depolarizes background synchrotron emission.Comment: Accepted to ApJ; 17 page

    What Drives Engagement in Professional Associations? A National Survey of Occupational Therapy Students

    Get PDF
    Exploring the factors that influence occupational therapy (OT) and occupational therapy assistant (OTA) students to join and participate in professional associations is critical to determine how to extend engagement after graduation. Previous research on health care student participation in professional associations has not included OT or OTA students. The researchers conducted an online quantitative national pilot survey to explore the perceptions of OT/OTA students and to identify supports and challenges for membership. The purposive sampling of currently enrolled students took place over three months in 2017, resulting in 251 responses representing all geographic regions in the United States. The researcher-developed survey evaluated student perceptions of professional membership challenges and supports at both the state and national levels. There was a statistically significant relationship between students participating in an organized student association and reporting membership in their state and national associations. Students sought out professional association memberships, even when their academic institutions did not provide support. A majority of students indicated that they planned to be American Occupational Therapy Association members after graduation. Students suggested that more economical membership, conference registration, and academic support could encourage active participation and engagement in their professional associations, extending beyond graduation. This study adds the OT student voice to the discussion about professional membership and engagement to the existing literature

    Predictors of early postpartum mental distress in mothers with midwifery home care - results from a nested case-control study

    Get PDF
    PRINCIPLES: The prevalence of early postpartum mental health conditions is high. Midwives and other health professionals visiting women at home may identify mothers at risk. This seems crucial given decreasing trends of length of hospital stay after childbirth. This study aimed to identify predictors of maternal mental distress in a midwifery home care setting. METHODS: Using the statistical database of independent midwives' services in Switzerland in 2007, we conducted a matched nested case-control study. Out of a source population of 34,295 mothers with midwifery home care in the first ten days after childbirth, 935 mothers with maternal distress and 3,645 controls, matched by midwife, were included. We analysed whether socio-demographic, maternal and neonatal factors predict maternal mental distress by multivariable conditional logistic regression analysis. RESULTS: Infant crying problems and not living with a partner were the strongest predictors for maternal distress, whereas higher parity was the most protective factor. Significantly elevated risks were also found for older age, lower educational levels, breast/breastfeeding problems, infant weight gain concerns, neonatal pathologies and use of midwifery care during pregnancy. A lower likelihood for maternal distress was seen for non-Swiss nationality, full-time employment before birth, intention to return to work after birth and midwife-led birth. CONCLUSION: The study informs on predictors of maternal mental distress identified in a home care setting in the early postpartum period. Midwives and other health care professionals should pay particular attention to mothers of excessively crying infants, single mothers and primipara, and assess the need for support of these mothers

    The Ratio of Total to Selective Extinction Toward Baade's Window

    Get PDF
    We measure the ratio of total to selective extinction, R_{VI}=A_V/E(V-I), toward Baade's Window by comparing the VIK colors of 132 Baade's Window G and K giants from Tiede, Frogel, & Terndrup with the solar-neighborhood (V-I),(V-K) relation from Bessell & Brett. We find R_{VI}=2.283 +/- 0.016, and show that our measurement has no significant dependence on stellar type from G0 to K4. Adjusting the Paczynski et al. determination of the centroid of the dereddened Baade's Window clump for this revised value of RVIR_{VI}, we find I_{0,RC}=14.43 and (V-I)_{0,RC}=1.058. This implies a distance to the Baade's Window clump of d_{BW} = 8.63 +/- 0.16 kpc, where the error bar takes account of statistical but not systematic uncertainties.Comment: 8 pages, 1 figure, submitted to Ap

    Modeling chemistry in and above snow at Summit, Greenland – Part 2: Impact of snowpack chemistry on the oxidation capacity of the boundary layer

    Get PDF
    The chemical composition of the boundary layer in snow covered regions is impacted by chemistry in the snowpack via uptake, processing, and emission of atmospheric trace gases. We use the coupled one-dimensional (1-D) snow chemistry and atmospheric boundary layer model MISTRA-SNOW to study the impact of snowpack chemistry on the oxidation capacity of the boundary layer. The model includes gas phase photochemistry and chemical reactions both in the interstitial air and the atmosphere. While it is acknowledged that the chemistry occurring at ice surfaces may consist of a true quasi-liquid layer and/or a concentrated brine layer, lack of additional knowledge requires that this chemistry be modeled as primarily aqueous chemistry occurring in a liquid-like layer (LLL) on snow grains. The model has been recently compared with BrO and NO data taken on 10 June–13 June 2008 as part of the Greenland Summit Halogen-HOx experiment (GSHOX). In the present study, we use the same focus period to investigate the influence of snowpack derived chemistry on OH and HOx + RO2 in the boundary layer. We compare model results with chemical ionization mass spectrometry (CIMS) measurements of the hydroxyl radical (OH) and of the hydroperoxyl radical (HO2) plus the sum of all organic peroxy radicals (RO2) taken at Summit during summer 2008. Using sensitivity runs we show that snowpack influenced nitrogen cycling and bromine chemistry both increase the oxidation capacity of the boundary layer and that together they increase the midday OH concentrations. Bromine chemistry increases the OH concentration by 10–18 % (10 % at noon LT), while snow sourced NOx increases OH concentrations by 20–50 % (27 % at noon LT). We show for the first time, using a coupled one dimensional snowpack-boundary layer model, that air-snow interactions impact the oxidation capacity of the boundary layer and that it is not possible to match measured OH levels without snowpack NOx and halogen emissions. Model predicted HONO compared with mistchamber measurements suggests there may be an unknown HONO source at Summit. Other model predicted HOx precursors, H2O2 and HCHO, compare well with measurements taken in summer 2000, which had lower levels than other years. Over 3 days, snow sourced NOx contributes an additional 2 ppb to boundary layer ozone production, while snow sourced bromine has the opposite effect and contributes 1 ppb to boundary layer ozone loss

    Hier ist wahrhaftig ein Loch im Himmel - The NGC 1999 dark globule is not a globule

    Full text link
    The NGC 1999 reflection nebula features a dark patch with a size of ~10,000 AU, which has been interpreted as a small, dense foreground globule and possible site of imminent star formation. We present Herschel PACS far-infrared 70 and 160mum maps, which reveal a flux deficit at the location of the globule. We estimate the globule mass needed to produce such an absorption feature to be a few tenths to a few Msun. Inspired by this Herschel observation, we obtained APEX LABOCA and SABOCA submillimeter continuum maps, and Magellan PANIC near-infrared images of the region. We do not detect a submillimer source at the location of the Herschel flux decrement; furthermore our observations place an upper limit on the mass of the globule of ~2.4x10^-2 Msun. Indeed, the submillimeter maps appear to show a flux depression as well. Furthermore, the near-infrared images detect faint background stars that are less affected by extinction inside the dark patch than in its surroundings. We suggest that the dark patch is in fact a hole or cavity in the material producing the NGC 1999 reflection nebula, excavated by protostellar jets from the V 380 Ori multiple system.Comment: accepted for the A&A Herschel issue; 7 page

    On the nature of the deeply embedded protostar OMC-2 FIR 4

    Get PDF
    We use mid-infrared to submillimeter data from the Spitzer, Herschel, and APEX telescopes to study the bright sub-mm source OMC-2 FIR 4. We find a point source at 8, 24, and 70 μ\mum, and a compact, but extended source at 160, 350, and 870 μ\mum. The peak of the emission from 8 to 70 μ\mum, attributed to the protostar associated with FIR 4, is displaced relative to the peak of the extended emission; the latter represents the large molecular core the protostar is embedded within. We determine that the protostar has a bolometric luminosity of 37 Lsun, although including more extended emission surrounding the point source raises this value to 86 Lsun. Radiative transfer models of the protostellar system fit the observed SED well and yield a total luminosity of most likely less than 100 Lsun. Our models suggest that the bolometric luminosity of the protostar could be just 12-14 Lsun, while the luminosity of the colder (~ 20 K) extended core could be around 100 Lsun, with a mass of about 27 Msun. Our derived luminosities for the protostar OMC-2 FIR 4 are in direct contradiction with previous claims of a total luminosity of 1000 Lsun (Crimier et al 2009). Furthermore, we find evidence from far-infrared molecular spectra (Kama et al. 2013, Manoj et al. 2013) and 3.6 cm emission (Reipurth et al 1999) that FIR 4 drives an outflow. The final stellar mass the protostar will ultimately achieve is uncertain due to its association with the large reservoir of mass found in the cold core.Comment: Accpeted by ApJ, 17 pages, 11 figure
    • …
    corecore