We use mid-infrared to submillimeter data from the Spitzer, Herschel, and
APEX telescopes to study the bright sub-mm source OMC-2 FIR 4. We find a point
source at 8, 24, and 70 μm, and a compact, but extended source at 160, 350,
and 870 μm. The peak of the emission from 8 to 70 μm, attributed to the
protostar associated with FIR 4, is displaced relative to the peak of the
extended emission; the latter represents the large molecular core the protostar
is embedded within. We determine that the protostar has a bolometric luminosity
of 37 Lsun, although including more extended emission surrounding the point
source raises this value to 86 Lsun. Radiative transfer models of the
protostellar system fit the observed SED well and yield a total luminosity of
most likely less than 100 Lsun. Our models suggest that the bolometric
luminosity of the protostar could be just 12-14 Lsun, while the luminosity of
the colder (~ 20 K) extended core could be around 100 Lsun, with a mass of
about 27 Msun. Our derived luminosities for the protostar OMC-2 FIR 4 are in
direct contradiction with previous claims of a total luminosity of 1000 Lsun
(Crimier et al 2009). Furthermore, we find evidence from far-infrared molecular
spectra (Kama et al. 2013, Manoj et al. 2013) and 3.6 cm emission (Reipurth et
al 1999) that FIR 4 drives an outflow. The final stellar mass the protostar
will ultimately achieve is uncertain due to its association with the large
reservoir of mass found in the cold core.Comment: Accpeted by ApJ, 17 pages, 11 figure