148 research outputs found

    Widening mismatch between UK seafood production and consumer demand: a 120-year perspective

    Get PDF
    This is the final version. Available from Springer via the DOI in this record. Data availability: The datasets generated and used for the UK seafood production and trade analyses and to produce Figs. 1–6 are available on GitHub at https://github.com/lukeo jharrison/UKSeafoodProductionConsumerDemandPaper (Harrison et al. 2023).Developed countries are increasingly dependent on international trade to meet seafood requirements, which has important social, environmental, and economic implications. After becoming an independent coastal state following Brexit, the UK faces increased trade barriers and changes in seafood availability and cost. We compiled a long-term (120-year) dataset of UK seafood production (landings and aquaculture), imports, and exports, and assessed the influence of policy change and consumer preference on domestic production and consumption. In the early twentieth century, distant-water fisheries met an increasing demand for large, flaky fish such as cod and haddock that are more abundant in northerly waters. Accordingly, from 1900 to 1975, the UK fleet supplied almost 90% of these fish. However, policy changes in the mid-1970s such as the widespread establishment of Exclusive Economic Zones and the UK joining the European Union resulted in large declines in distant-water fisheries and a growing mismatch between seafood production versus consumption in the UK. While in 1975, UK landings and aquaculture accounted for 89% of seafood consumed by the British public, by 2019 this was only 40%. The combination of policy changes and staunch consumer preferences for non-local species has resulted in today’s situation, where the vast majority of seafood consumed in the UK is imported, and most seafood produced domestically is exported. There are also health considerations. The UK public currently consumes 31% less seafood than is recommended by government guidelines, and even if local species were more popular, total domestic production would still be 73% below recommended levels. In the face of climate change, global overfishing and potentially restrictive trade barriers, promoting locally sourced seafood and non-seafood alternatives would be prudent to help meet national food security demands, and health and environmental targets.UK Research and Innovatio

    An update of malaria infection and anaemia in adults in Buea, Cameroon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anaemia is caused by many factors in developing countries including malaria. We compared anaemia rates in patients with malaria parasitaemia to that of patients without malaria parasitaemia.</p> <p>Findings</p> <p>A cross-sectional study was carried out from November 2007 to July 2008 in health units in Buea, Cameroon. Adult patients with fever or history of fever were included in the study. Information on socio-demographic variables and other variables was collected using a questionnaire. Malaria parasitaemia status was determined by microscopy using Giemsa stained thick blood smears. Haemoglobin levels were determined by the microhaematocrit technique.</p> <p>The study population consisted of 250 adult patients with a mean age of 29.31 years (SD = 10.63) and 59.44% were females. 25.60% of the patients had malaria parasitaemia while 14.80% had anaemia (haemoglobin < 11 g/dl). Logistic regression revealed that those with malaria parasitaemia had more anaemia compared to those without malaria parasitaemia(OR = 4.33, 95%CI = 1.21-15.43, p = 0.02) after adjusting for age, sex, rural residence, socioeconomic status, use of antimalarials, use of insecticide treated nets(ITN) and white blood cell count.</p> <p>Conclusions</p> <p>In adult patients with fever in this setting, malaria parasitaemia contributes to anaemia and is of public health impact. Our results also provide a baseline prevalence for malaria parasitaemia in febrile adults in health units in this setting.</p

    Unifying approaches to Functional Marine Connectivity for improved marine resource management: the European SEA-UNICORN COST Action

    Get PDF
    Truly sustainable development in a human-altered, fragmented marine environment subject to unprecedented climate change, demands informed planning strategies in order to be successful. Beyond a simple understanding of the distribution of marine species, data describing how variations in spatio-temporal dynamics impact ecosystem functioning and the evolution of species are required. Marine Functional Connectivity (MFC) characterizes the flows of matter, genes and energy produced by organism movements and migrations across the seascape. As such, MFC determines the ecological and evolutionary interdependency of populations, and ultimately the fate of species and ecosystems. Gathering effective MFC knowledge can therefore improve predictions of the impacts of environmental change and help to refine management and conservation strategies for the seas and oceans. Gathering these data are challenging however, as access to, and survey of marine ecosystems still presents significant challenge. Over 50 European institutions currently investigate aspects of MFC using complementary methods across multiple research fields, to understand the ecology and evolution of marine species. The aim of SEA-UNICORN, a COST Action supported by COST (European Cooperation in Science and Technology), is to bring together this research effort, unite the multiple approaches to MFC, and to integrate these under a common conceptual and analytical framework. The consortium brings together a diverse group of scientists to collate existing MFC data, to identify knowledge gaps, to enhance complementarity among disciplines, and to devise common approaches to MFC. SEA-UNICORN will promote co-working between connectivity practitioners and ecosystem modelers to facilitate the incorporation of MFC data into the predictive models used to identify marine conservation priorities. Ultimately, SEA-UNICORN will forge strong forward-working links between scientists, policy-makers and stakeholders to facilitate the integration of MFC knowledge into decision support tools for marine management and environmental policies

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism

    Get PDF
    Huntington’s disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations in these brain structures has the potential to provide insight into pathological processes. We aim to gain understanding of metabolite changes with respect to the disease stage and pathophysiological changes. We studied five brain regions using magnetic resonance spectroscopy (MRS) using a 7-Tesla MRI scanner. Localized proton spectra were acquired to obtain six metabolite concentrations. MRS was performed in the caudate nucleus, putamen, thalamus, hypothalamus, and frontal lobe in 44 control subjects, premanifest gene carriers and manifest HD. In the caudate nucleus, HD patients display lower NAA (p = 0.009) and lower creatine concentration (p = 0.001) as compared to controls. In the putamen, manifest HD patients show lower NAA (p = 0.024), lower creatine concentration (p = 0.027), and lower glutamate (p = 0.013). Although absolute values of NAA, creatine, and glutamate were lower, no significant differences to controls were found in the premanifest gene carriers. The lower concentrations of NAA and creatine in the caudate nucleus and putamen of early manifest HD suggest deficits in neuronal integrity and energy metabolism. The changes in glutamate could support the excitotoxicity theory. These findings not only give insight into neuropathological changes in HD but also indicate that MRS can possibly be applied in future clinical trails to evaluate medication targeted at specific metabolic processes
    corecore