161 research outputs found

    Causes and Conditions of the Ukrainian-Polish Inter-Ethnic Conflict Since World War II

    Get PDF
    У статті здійснено спробу розкрити причини українсько-польського, збройно-політичного протистояння в роки Другої світової війни. Проаналізовано відносини українського й польського народів напередодні конфлікту. Розглянуто роль Німеччини й Радянського Союзу в розгортанні українсько-польського конфлікту в період Другої світової війни. In the article attempts to uncover the causes of the Ukrainian-Polish, armed and political resistance in World War II. Author analyzed the relationship of the Ukrainian and Polish people before the conflict. The role of Germany and the Soviet Union in the deployment of the Polish-Ukrainian conflict since World War II

    Changes in the group of rarely occurring cereal weeds at selected constant fields in the Miechów Upland

    Get PDF
    Wydano przy pomocy finansowej Uniwersytetu Łódzkiego oraz Komitetu Badań NaukowychSeventeen years of phytosociological observations (1977-1993) of cereal cultures in the same complex of fields in the Miechów Upland were used for this study. The region is characterised by the most intensive agriculture in the Kraków area, because of very good soil (chernozems). The study concentrates mainly on rare species, considered threatened with extinction in the territory of Poland by Warcholińska (1994).Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 zostało dofinansowane ze środków MNiSW w ramach działalności upowszechniającej naukę

    Dynamics of a linear oscillator connected to a small strongly non-linear hysteretic absorber

    Full text link
    The present investigation deals with the dynamics of a two-degrees-of-freedom system which consists of a main linear oscillator and a strongly nonlinear absorber with small mass. The nonlinear oscillator has a softening hysteretic characteristic represented by a Bouc-Wen model. The periodic solutions of this system are studied and their calcu- lation is performed through an averaging procedure. The study of nonlinear modes and their stability shows, under specific conditions, the existence of localization which is responsible for a passive irreversible energy transfer from the linear oscillator to the nonlinear one. The dissipative effect of the nonlinearity appears to play an important role in the energy transfer phenomenon and some design criteria can be drawn regarding this parameter among others to optimize this energy transfer. The free transient response is investigated and it is shown that the energy transfer appears when the energy input is sufficient in accordance with the predictions from the nonlinear modes. Finally, the steady-state forced response of the system is investigated. When the input of energy is sufficient, the resonant response (close to nonlinear modes) experiences localization of the vibrations in the nonlinear absorber and jump phenomena

    A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions

    Full text link
    Combinig the harmonic balance method (HBM) and a continuation method is a well-known technique to follow the periodic solutions of dynamical systems when a control parameter is varied. However, since deriving the algebraic system containing the Fourier coefficients can be a highly cumbersome procedure, the classical HBM is often limited to polynomial (quadratic and cubic) nonlinearities and/or a few harmonics. Several variations on the classical HBM, such as the incremental HBM or the alternating frequency/time domain HBM, have been presented in the literature to overcome this shortcoming. Here, we present an alternative approach that can be applied to a very large class of dynamical systems (autonomous or forced) with smooth equations. The main idea is to systematically recast the dynamical system in quadratic polynomial form before applying the HBM. Once the equations have been rendered quadratic, it becomes obvious to derive the algebraic system and solve it by the so-called ANM continuation technique. Several classical examples are presented to illustrate the use of this numerical approach.Comment: PACS numbers: 02.30.Mv, 02.30.Nw, 02.30.Px, 02.60.-x, 02.70.-

    Forced and self-excited oscillations of an optomechanical cavity

    Get PDF
    We experimentally study forced and self oscillations of an optomechanical cavity which is formed between a fiber Bragg grating that serves as a static mirror and between a freely suspended metallic mechanical resonator that serves as a moving mirror. In the domain of small amplitude mechanical oscillations, we find that the optomechanical coupling is manifested as changes in the effective resonance frequency, damping rate and cubic nonlinearity of the mechanical resonator. Moreover, self oscillations of the micromechanical mirror are observed above a certain optical power threshold. A comparison between the experimental results and a theoretical model that we have recently presented yields a good agreement. The comparison also indicates that the dominant optomechanical coupling mechanism is the heating of the metallic mirror due to optical absorption.Comment: 11 pages, 6 figure

    Bifurcations, Chaos, Controlling and Synchronization of Certain Nonlinear Oscillators

    Get PDF
    In this set of lectures, we review briefly some of the recent developments in the study of the chaotic dynamics of nonlinear oscillators, particularly of damped and driven type. By taking a representative set of examples such as the Duffing, Bonhoeffer-van der Pol and MLC circuit oscillators, we briefly explain the various bifurcations and chaos phenomena associated with these systems. We use numerical and analytical as well as analogue simulation methods to study these systems. Then we point out how controlling of chaotic motions can be effected by algorithmic procedures requiring minimal perturbations. Finally we briefly discuss how synchronization of identically evolving chaotic systems can be achieved and how they can be used in secure communications.Comment: 31 pages (24 figures) LaTeX. To appear Springer Lecture Notes in Physics Please Lakshmanan for figures (e-mail: [email protected]

    The influence of plant mulches on the content of phenolic compounds in soil and primary weed infestation of maize

    Get PDF
    In growing maize, an increase in the content of phenolic compounds and selected phenolic acids in soil was found after the incorporation of white mustard, buckwheat, spring barley, oats and rye mulches into the soil. The highest content of phenolic compounds in soil was found after oats mulch incorporation (20% more than in the control soil). The highest content of selected phenolic acids was found for the soil with the oats and rye mulch. Among the phenolic acids investigated, ferulic acid was most commonly found in the soil with the plant mulches. However, two phenolic acids: the protocatechuic and chlorogenic acid, were not detected in any soil samples (neither in the control soil nor in the mulched soil). At the same time, a decrease in the primary weed infestation level in maize was found in the plots with all the applied plant mulches, especially on the plots with oats, barley and mustard. The plant mulches were more inhibitory against monocotyledonous weeds than dicotyledonous ones. During high precipitation events and wet weather, a rapid decrease in the content of phenolic compounds in soil and an increase in the primary weed infestation level in maize were observed

    Cascades of subharmonic stationary states in strongly non-linear driven planar systems

    Full text link
    The dynamics of a one-degree of freedom oscillator with arbitrary polynomial non-linearity subjected to an external periodic excitation is studied. The sequences (cascades) of harmonic and subharmonic stationary solutions to the equation of motion are obtained by using the harmonic balance approximation adapted for arbitrary truncation numbers, powers of non-linearity, and orders of subharmonics. A scheme for investigating the stability of the harmonic balance stationary solutions of such a general form is developed on the basis of the Floquet theorem. Besides establishing the stable/unstable nature of a stationary solution, its stability analysis allows obtaining the regions of parameters, where symmetry-breaking and period-doubling bifurcations occur. Thus, for period-doubling cascades, each unstable stationary solution is used as a base solution for finding a subsequent stationary state in a cascade. The procedure is repeated until this stationary state becomes stable provided that a stable solution can finally be achieved. The proposed technique is applied to calculate the sequences of subharmonic stationary states in driven hardening Duffing's oscillator. The existence of stable subharmonic motions found is confirmed by solving the differential equation of motion numerically by means of a time-difference method, with initial conditions being supplied by the harmonic balance approximation.Comment: 37 pages, 11 figures, revised material on chaotic motio

    Qualitative Analysis of Forced Response of Blisks With Friction Ring Dampers

    Full text link
    A damping strategy for blisks (integrally bladed disks) of turbomachinery involving a friction ring is investigated. These rings, located in grooves underside the wheel of the blisks, are held in contact by centrifugal loads and the energy is dissipated when relative motions between the ring and the disk occur. A representative lumped parameter model of the system is introduced and the steady-state nonlinear response is derived using a multi-harmonic balance method combined with an AFT procedure where the friction force is calculated in the time domain. Numerical simulations are presented for several damper characteristics and several excitation configurations. From these results, the performance of this damping strategy is discussed and some design guidelines are given
    corecore