50 research outputs found

    Information reuse of nondestructive evaluation (NDE) data sets

    Get PDF
    To achieve added value from data spaces and data sets in general, an essential condition is to ensure the high quality of the stored information and its continuous availability. Nondestructive evaluation (NDE) processes represent an information source with potential for reuse. These provide essential information for the evaluation and characterization of materials and components. This information, along with others such as process parameters, is a valuable resource for data-driven added value, e.g., for process optimization or as training data for artificial intelligence (AI) applications. However, this use requires the continuous availability of NDE data sets as well as their structuring and readability. This paper describes the steps necessary to realize an NDE data cycle from the generation of information to the reuse of data.</p

    Cleaning the USNO-B Catalog through automatic detection of optical artifacts

    Full text link
    The USNO-B Catalog contains spurious entries that are caused by diffraction spikes and circular reflection halos around bright stars in the original imaging data. These spurious entries appear in the Catalog as if they were real stars; they are confusing for some scientific tasks. The spurious entries can be identified by simple computer vision techniques because they produce repeatable patterns on the sky. Some techniques employed here are variants of the Hough transform, one of which is sensitive to (two-dimensional) overdensities of faint stars in thin right-angle cross patterns centered on bright (<13 \mag) stars, and one of which is sensitive to thin annular overdensities centered on very bright (<7 \mag) stars. After enforcing conservative statistical requirements on spurious-entry identifications, we find that of the 1,042,618,261 entries in the USNO-B Catalog, 24,148,382 of them (2.3 \percent) are identified as spurious by diffraction-spike criteria and 196,133 (0.02 \percent) are identified as spurious by reflection-halo criteria. The spurious entries are often detected in more than 2 bands and are not overwhelmingly outliers in any photometric properties; they therefore cannot be rejected easily on other grounds, i.e., without the use of computer vision techniques. We demonstrate our method, and return to the community in electronic form a table of spurious entries in the Catalog.Comment: published in A

    Submarine groundwater discharge to Tampa Bay : nutrient fluxes and biogeochemistry of the coastal aquifer

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Chemistry 104 (2007): 85-97, doi:10.1016/j.marchem.2006.10.012.To separately quantify the roles of fresh and saline submarine groundwater discharge (SGD), relative to that of rivers, in transporting nutrients to Tampa Bay, Florida, we used three approaches (Darcy's Law calculations, a watershed water budget, and a 222Rn mass-balance) to estimate rate of SGD from the Pinellas peninsula. Groundwater samples were collected in 69 locations in the coastal aquifer to examine biogeochemical conditions, nutrient concentrations and stoichiometry, and salinity structure. Salinity structure was also examined using stationary electrical resistivity measurements. The coastal aquifer along the Pinellas peninsula was chemically reducing in all locations sampled, and that condition influences nitrogen (N) form and mobility of N and PO43−. Concentrations of NH4+, PO43− and ratio of dissolved inorganic N (DIN) to PO43− were all related to measured oxidation/reduction potential (pε) of the groundwater. Ratio of DIN: PO43− was below Redfield ratio in both fresh and saline groundwater. Nitrogen occurred almost exclusively in reduced forms, NH4+ and dissolved organic nitrogen (DON), suggesting that anthropogenic N is exported from the watershed in those forms. In comparison to other SGD studies, rate of PO43− flux in the seepage zone (μM m− 2 d− 1) in Tampa Bay was higher than previous estimates, likely due to 1) high watershed population density, 2) chemically reducing conditions, and 3) high ion concentrations in fresh groundwater. Estimates of freshwater groundwater flux indicate that the ratio of groundwater discharge to stream flow is not, vert, similar 20 to 50%, and that the magnitudes of both the total dissolved nitrogen and PO43− loads due to fresh SGD are not, vert, similar 40 to 100% of loads carried by streams. Estimates of SGD based on radon inventories in near-shore waters were 2 to 5 times greater than the estimates of freshwater groundwater discharge, suggesting that brackish and saline SGD is also an important process in Tampa Bay and results in flux of regenerated N and P from sediment to surface water.This work was supported by a USGS Mendenhall Postdoctoral Fellowship to K.D.K. and by the USGS Coastal and Marine Geology Program's (CMGP) Tampa Bay Project

    The Use of Flow-Injection Analysis with Chemiluminescence Detection of Aqueous Ferrous Iron in Waters Containing High Concentrations of Organic Compounds

    Get PDF
    An evaluation of flow-injection analysis with chemiluminescence detection (FIA-CL) to quantify Fe2+(aq) in freshwaters was performed. Iron-coordinating and/or iron-reducing compounds, dissolved organic matter (DOM), and samples from two natural water systems were used to amend standard solutions of Fe2+(aq). Slopes of the response curves from ferrous iron standards (1 – 100 nM) were compared to the response curves of iron standards containing the amendments. Results suggest that FIA-CL is not suitable for systems containing ascorbate, hydroxylamine, cysteine or DOM. Little or no change in sensitivity occurred in solutions of oxalate and glycine or in natural waters with little organic matter

    Diel surface temperature range scales with lake size

    Get PDF
    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored

    Fast Growth Increases the Selective Advantage of a Mutation Arising Recurrently during Evolution under Metal Limitation

    Get PDF
    Understanding the evolution of biological systems requires untangling the molecular mechanisms that connect genetic and environmental variations to their physiological consequences. Metal limitation across many environments, ranging from pathogens in the human body to phytoplankton in the oceans, imposes strong selection for improved metal acquisition systems. In this study, we uncovered the genetic and physiological basis of adaptation to metal limitation using experimental populations of Methylobacterium extorquens AM1 evolved in metal-deficient growth media. We identified a transposition mutation arising recurrently in 30 of 32 independent populations that utilized methanol as a carbon source, but not in any of the 8 that utilized only succinate. These parallel insertion events increased expression of a novel transporter system that enhanced cobalt uptake. Such ability ensured the production of vitamin B12, a cobalt-containing cofactor, to sustain two vitamin B12–dependent enzymatic reactions essential to methanol, but not succinate, metabolism. Interestingly, this mutation provided higher selective advantages under genetic backgrounds or incubation temperatures that permit faster growth, indicating growth-rate–dependent epistatic and genotype-by-environment interactions. Our results link beneficial mutations emerging in a metal-limiting environment to their physiological basis in carbon metabolism, suggest that certain molecular features may promote the emergence of parallel mutations, and indicate that the selective advantages of some mutations depend generically upon changes in growth rate that can stem from either genetic or environmental influences

    Investigate the hardware description language Chisel - A case study implementing the Heston model

    Get PDF
    This paper presents a case study comparing the hardware description language „Constructing Hardware in a Scala Embedded Language“(Chisel) to VHDL. For a thorough comparison the Heston Model was implemented, a stochastic model used in financial mathematics to calculate option prices. Metrics like hardware utilization and maximum clock rate were extracted from both resulting designs and compared to each other. The results showed a 30% reduction in code size compared to VHDL, while the resulting circuits had about the same hardware utilization. Using Chisel however proofed to be difficult because of a few features that were not available for this case study
    corecore