1,140 research outputs found

    Formal concept analysis and structures underlying quantum logics

    Get PDF
    A Hilbert space HH induces a formal context, the Hilbert formal context H\overline H, whose associated concept lattice is isomorphic to the lattice of closed subspaces of HH. This set of closed subspaces, denoted C(H)\mathcal C(H), is important in the development of quantum logic and, as an algebraic structure, corresponds to a so-called ``propositional system'', that is, a complete, atomistic, orthomodular lattice which satisfies the covering law. In this paper, we continue with our study of the Chu construction by introducing the Chu correspondences between Hilbert contexts, and showing that the category of Propositional Systems, PropSys, is equivalent to the category of ChuCorsH\text{ChuCors}_{\mathcal H} of Chu correspondences between Hilbert contextsUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Zakharov simulation study of spectral features of on-demand Langmuir turbulence in an inhomogeneous plasma

    Full text link
    We have performed a simulation study of Langmuir turbulence in the Earth's ionosphere by means of a Zakharov model with parameters relevant for the F layer. The model includes dissipative terms to model collisions and Landau damping of the electrons and ions, and a linear density profile, which models the ionospheric plasma inhomogeneity whose length scale is of the order 10--100 km. The injection of energy into the system is modeled by a constant source term in the Zakharov equation. Langmuir turbulence is excited ``on-demand'' in controlled ionospheric modification experiments where the energy is provided by an HF radio beam injected into the overhead ionospheric plasma. The ensuing turbulence can be studied with radars and in the form of secondary radiation recorded by ground-based receivers. We have analyzed spectral signatures of the turbulence for different sets of parameters and different altitudes relative to the turning point of the linear Langmuir mode where the Langmuir frequency equals the local plasma frequency. By a parametric analysis, we have derived a simple scaling law, which links the spectral width of the turbulent frequency spectrum to the physical parameters in the ionosphere. The scaling law provides a quantitative relation between the physical parameters (temperatures, electron number density, ionospheric length scale, etc.) and the observed frequency spectrum. This law may be useful for interpreting experimental results.Comment: 7 pages, 8 figure

    Inactivation of pollen and other effects of genome-plastome incompatibility in Oenothera

    Full text link
    A series of strains of the homozygous species Oenothera grandiflora (characterized by the genome BB and plastome III) were combined with plastome IV from O. parviflora (BC-IV) by means of appropriate crosses. An incompatibility between genome B and plastome IV is expressed in the haplo- and diplophase: (1) B-IV pollen, though normally developed, is largely inactive. The extent of the inactivation varies between different strains and shows a seasonal fluctuation as determined by seed set in outcrossing and selfing experiments. (2) In most of the strains lethality of BB-IV embryos is the rule, leading to empty seeds. This can be ameliorated by including another plastome in the zygotes and developing embryos on account of the biparental plastid transmission in Oenothera. It can best be demonstrated in crosses with a seed parent having normal green plastids of plastome IV and mutated chlorophyll deficient plastids from a different plastome in the pollen parent, leading to variegated progeny as well as a remainder of empty seeds. (3) In about one-half of the strains the BB-IV plants exhibit a temporary bleaching of the virescens type. The incompatibily between genome B and plastome IV does not support the earlier assumption that plastome IV is the ancestor of plastomes II, III, and V. Instead, a precursor plastome is postulated from which plastomes II, III, and IV are descended. While plastome I can be derived from II, only plastome V can be descended from plastome IV.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41640/1/606_2004_Article_BF00984370.pd

    Statistical analysis of ENDOR spectra

    Get PDF
    Electron–nuclear double resonance (ENDOR) measures the hyperfine interaction of magnetic nuclei with paramagnetic centers and is hence a powerful tool for spectroscopic investigations extending from biophysics to material science. Progress in microwave technology and the recent availability of commercial electron paramagnetic resonance (EPR) spectrometers up to an electron Larmor frequency of 263 GHz now open the opportunity for a more quantitative spectral analysis. Using representative spectra of a prototype amino acid radical in a biologically relevant enzyme, the Y∙122 in Escherichia coli ribonucleotide reductase, we developed a statistical model for ENDOR data and conducted statistical inference on the spectra including uncertainty estimation and hypothesis testing. Our approach in conjunction with 1H/2H isotopic labeling of Y∙122 in the protein unambiguously established new unexpected spectral contributions. Density functional theory (DFT) calculations and ENDOR spectral simulations indicated that these features result from the beta-methylene hyperfine coupling and are caused by a distribution of molecular conformations, likely important for the biological function of this essential radical. The results demonstrate that model-based statistical analysis in combination with state-of-the-art spectroscopy accesses information hitherto beyond standard approaches

    In Memoriam, Academician Prof. Dr. Osor Shagdarsuren (1929-2010)

    Get PDF
    Academician, Professor Osor Shagdarsuren passed away due to apoplexy on Tuesday, February 2, 2010, at the age of 81. He was one of the most respected Mongolian ornithologists, biologists, and educators. The Mongolian scientific community has lost one of its greatest members, the premier Mongolian ornithologist

    Engineering tyrosine-based electron flow pathways in proteins: The case of aplysia myoglobin

    Get PDF
    Tyrosine residues can act as redox cofactors that provide an electron transfer ("hole-hopping") route that enhances the rate of ferryl heme iron reduction by externally added reductants, for example, ascorbate. Aplysia fasciata myoglobin, having no naturally occurring tyrosines but 15 phenylalanines that can be selectively mutated to tyrosine residues, provides an ideal protein with which to study such through-protein electron transfer pathways and ways to manipulate them. Two surface exposed phenylalanines that are close to the heme have been mutated to tyrosines (F42Y, F98Y). In both of these, the rate of ferryl heme reduction increased by up to 3 orders of magnitude. This result cannot be explained in terms of distance or redox potential change between donor and acceptor but indicates that tyrosines, by virtue of their ability to form radicals, act as redox cofactors in a new pathway. The mechanism is discussed in terms of the Marcus theory and the specific protonation/deprotonation states of the oxoferryl iron and tyrosine. Tyrosine radicals have been observed and quantified by EPR spectroscopy in both mutants, consistent with the proposed mechanism. The location of each radical is unambiguous and allows us to validate theoretical methods that assign radical location on the basis of EPR hyperfine structure. Mutation to tyrosine decreases the lipid peroxidase activity of this myoglobin in the presence of low concentrations of reductant, and the possibility of decreasing the intrinsic toxicity of hemoglobin by introduction of these pathways is discussed. © 2012 American Chemical Society

    Phase transition in the collisionless regime for wave-particle interaction

    Full text link
    Gibbs statistical mechanics is derived for the Hamiltonian system coupling self-consistently a wave to N particles. This identifies Landau damping with a regime where a second order phase transition occurs. For nonequilibrium initial data with warm particles, a critical initial wave intensity is found: above it, thermodynamics predicts a finite wave amplitude in the limit of infinite N; below it, the equilibrium amplitude vanishes. Simulations support these predictions providing new insight on the long-time nonlinear fate of the wave due to Landau damping in plasmas.Comment: 12 pages (RevTeX), 2 figures (PostScript

    The Familial Clustering of Age at Menarche in Extended Twin Families

    Get PDF
    The timing of puberty is complex, possibly involving many genetic factors that may interact with environmental influences. Familial resemblance for age at menarche was studied in a sample of 4,995 female twins, 1,296 sisters, 2,946 mothers and 635 female spouses of male twins. They had indicated their age at menarche as part of a larger longitudinal survey. We assessed assortative mating for age at menarche, gene–environment interaction effects and estimated the heritability of individual differences in pubertal timing. There was significant evidence of gene–environment interaction, accounting for 1.5% of the variance. There was no indication of consistent mate assortment on age at menarche. Individual differences in age at menarche are highly heritable, with additive genetic factors explaining at least 70% of the true variation. An additional 1.5% of the variation can be explained by a genotype–environment interaction effect where environmental factors are more important in individuals genetically predisposed for late menarche
    corecore