127 research outputs found
The role of ureteric indocyanine green fluorescence in colorectal surgery: a retrospective cohort study.
BACKGROUND
Ureteric injury (UI) is an infrequent but serious complication of colorectal surgery. Prophylactic ureteric stenting is employed to avoid UI, yet its efficacy remains debated. Intraoperative indocyanine green fluorescence imaging (ICG-FI) has been used to facilitate ureter detection. This study aimed to investigate the role of ICG-FI in identification of ureters during colorectal surgery and its impact on the incidence of UI.
METHODS
A retrospective cohort study involving 556 consecutive patients who underwent colorectal surgery between 2018 and 2023 assessed the utility of routine prophylactic ureteric stenting with adjunctive ICG-FI. Patients with ICG-FI were compared to those without ICG-FI. Demographic data, operative details, and postoperative morbidity were analyzed. Statistical analysis included univariable regression.
RESULTS
Ureteric ICG-FI was used in 312 (56.1%) patients, whereas 43.9% were controls. Both groups were comparable in terms of demographics except for a higher prevalence of prior abdominal surgeries in the ICG-FI group. Although intraoperative visualization was significantly higher in the ICG-FI group (95.3% vs 89.1%; p = 0.011), the incidence of UI was similar between groups (0.3% vs 0.8%; p = 0.585). Postoperative complications were similar between the two groups. Median stent insertion time was longer in the ICG-FI group (32 vs 25 min; p = 0.001).
CONCLUSION
Ureteric ICG-FI improved intraoperative visualization of the ureters but was not associated with a reduced UI rate. Median stent insertion time increased with use of ureteric ICG-FI, but total operative time did not. Despite its limitations, this study is the largest of its kind suggesting that ureteric ICG-FI may be a valuable adjunct to facilitate ureteric visualization during colorectal surgery
Multichannel FPGA based MVT system for high precision time (20~ps~RMS) and charge measurement
In this article it is presented an FPGA based ulti-oltage hreshold
(MVT) system which allows of sampling fast signals ( ns rising and falling
edge) in both voltage and time domain. It is possible to achieve a precision of
time measurement of ps RMS and reconstruct charge of signals, using a
simple approach, with deviation from real value smaller than 10.
Utilization of the differential inputs of an FPGA chip as comparators together
with an implementation of a TDC inside an FPGA allowed us to achieve a compact
multi-channel system characterized by low power consumption and low production
costs. This paper describes realization and functioning of the system
comprising 192-channel TDC board and a four mezzanine cards which split
incoming signals and discriminate them. The boards have been used to validate a
newly developed Time-of-Flight Positron Emission Tomography system based on
plastic scintillators. The achieved full system time resolution of
(TOF) ps is by factor of two better with respect to the
current TOF-PET systems.Comment: Accepted for publication in JINST, 10 pages, 8 figure
Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA - SoC Devices
A novel approach to tomographic data processing has been developed and
evaluated using the Jagiellonian PET (J-PET) scanner as an example. We propose
a system in which there is no need for powerful, local to the scanner
processing facility, capable to reconstruct images on the fly. Instead we
introduce a Field Programmable Gate Array (FPGA) System-on-Chip (SoC) platform
connected directly to data streams coming from the scanner, which can perform
event building, filtering, coincidence search and Region-Of-Response (ROR)
reconstruction by the programmable logic and visualization by the integrated
processors. The platform significantly reduces data volume converting raw data
to a list-mode representation, while generating visualization on the fly.Comment: IEEE Transactions on Medical Imaging, 17 May 201
The interaction studied via femtoscopy in p + Nb reactions at
We report on the first measurement of and correlations via
the femtoscopy method in p+Nb reactions at , studied with the High Acceptance Di-Electron Spectrometer
(HADES). By comparing the experimental correlation function to model
calculations, a source size for pairs of and a slightly
smaller value for of is extracted.
Using the geometrical extent of the particle emitting region, determined
experimentally with correlations as reference together with a source
function from a transport model, it is possible to study different sets of
scattering parameters. The correlation is proven sensitive to
predicted scattering length values from chiral effective field theory. We
demonstrate that the femtoscopy technique can be used as valid alternative to
the analysis of scattering data to study the hyperon-nucleon interaction.Comment: 12 pages, 11 figure
Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR
The possibility of measuring the proton electromagnetic form factors in the
time-like region at FAIR with the \PANDA detector is discussed. Detailed
simulations on signal efficiency for the annihilation of into a
lepton pair as well as for the most important background channels have been
performed. It is shown that precision measurements of the differential cross
section of the reaction can be obtained in a wide
angular and kinematical range. The individual determination of the moduli of
the electric and magnetic proton form factors will be possible up to a value of
momentum transfer squared of (GeV/c). The total cross section will be measured up to (GeV/c).
The results obtained from simulated events are compared to the existing data.
Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations,
4 tables, 9 figure
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Simulation results for future measurements of electromagnetic proton form
factors at \PANDA (FAIR) within the PandaRoot software framework are reported.
The statistical precision with which the proton form factors can be determined
is estimated. The signal channel is studied on the basis
of two different but consistent procedures. The suppression of the main
background channel, , is studied.
Furthermore, the background versus signal efficiency, statistical and
systematical uncertainties on the extracted proton form factors are evaluated
using two different procedures. The results are consistent with those of a
previous simulation study using an older, simplified framework. However, a
slightly better precision is achieved in the PandaRoot study in a large range
of momentum transfer, assuming the nominal beam conditions and detector
performance
Double pion production in np and pp collisions at 1.25 GeV with HADES
The results of double pion production in np and pp collisions at an incident beam energy of 1.25 GeV with the HADES spectrometer at GSI are presented. The np-reactions were studied in d p collisions at 1.25 GeV/u using Forward Wall hodoscope aimed at registering spectator protons. High statistic invariantmass and angular distributions are obtained within the HADES acceptance which are compared with phase-space distributions
- …