13 research outputs found

    Cultivating a questioning mind: Student-led question composition in large courses

    Get PDF
    Asking a good question is not a trivial task. It requires deep comprehension and concept integration. To facilitate critical thinking and mastering of foundational concepts in a large Genetics course (~1200 students) at the second-year undergraduate level, we decided to actively engage students in question creation. We used “Quizzical”, an online platform developed by Prof. Dan Riggs (Riggs et al., 2020, https://doi.org/10.1187/cbe.19-09-0189). Via this platform, students are tasked with the creation of multiple-choice questions. For each of the suggested answer choices, students are required to provide a comprehensive justification. This includes justification for the correct answer as well as for each of the distractors. An added advantage of the platform is the generation of student-authored quiz banks that can be used for practice and participation marks. Since the questions are created by multiple authors, they included diverse point of views, which we learned the students greatly appreciated. To foster metacognition and encourage a shift from perceiving learning as memorization of information, students were encouraged to create application-based questions. Higher grades were granted to questions that creatively integrated multiple concepts or required knowledge application. In order to inform our teaching practices, pilot studies were conducted in Fall 2021 and Summer 2022, where students were asked to complete an anonymous survey regarding their experiences with Quizzical, and the feedback that we received was positive overall. We will discuss the learning outcomes achieved by engaging the students in question creation, and will share quantitative and formative feedback received from our students. This research was approved by our institutional research ethics board

    Aqueous Redox Flow Battery Suitable for High Temperature Applications Based on a Tailor‐Made Ferrocene Copolymer

    Get PDF
    Abstract Water‐soluble, and ferrocene‐containing methacrylamide copolymers with different comonomer ratios of the solubility‐promoting comonomer [2‐(methacryloyloxy)‐ethyl]‐trimethylammonium chloride (METAC) are synthesized in order to obtain a novel, temperature‐stable electrolyte for aqueous redox flow batteries. The electrochemical properties of one chosen polymer are studied in detail by cyclic voltammetry and rotating disc electrode (RDE) investigations. Additionally, the diffusion coefficient and the charge transfer rate are obtained from these measurements. The diffusion coefficient from RDE is compared to the value from synthetic boundary experiments at battery concentrations, using an analytical ultracentrifuge, yielding diffusion coefficients of a similar order of magnitude. The polymer is further tested in a redox flow battery setup. While performing charge and discharge experiments against the well‐established bis ‐(trimethylammoniumpropyl)‐viologen, the polymer reveals high columbic efficiencies of >99.8% and desirable apparent capacity retention, both at room temperature as well as at 60 °C. Further experiments are conducted to verify the stability of the active compounds under these conditions in both charge states. Lastly, the electrochemical behavior is linked to the characteristics of the polymers concerning absolute values of the molar mass and diffusion coefficients.A new ferrocene containing monomer is synthesized and its copolymerization with a water‐solubility promoting comonomer is investigated. The electrochemical and solution characteristics of a corresponding polymer are studied in detail. With a coulombic efficiency of >99.8% in an aqueous redox flow battery setup at 60 °C, a cheap, robust system for use at elevated temperatures is presented. imag

    A viologen polymer and a compact ferrocene: Comparison of solution viscosities and their performance in a redox flow battery with a size exclusion membrane

    Get PDF
    In this work, the synthesis and characterization of a compact, ferrocene tetramer and a linear viologen polymer is reported. The latter material is a new, 4,4â€Č‐bipyridine containing, organo‐soluble polymer. As aimed for solubility in nonpolar solvents, a 2‐ethylhexyl‐moiety to promote organosolubility and 4‐vinylbenzyl serving as a polymerizable group are introduced to a 4,4â€Č‐bipyridine. The halide anions of the monomer cation are exchanged to bis(trifluoromethansulfon)imide, which further enhances organosolubility. The monomer is subsequently copolymerized with styrene by free radical polymerization. In addition, a four‐ferrocene‐containing compact structure, based on pentaerythritol, is synthesized via the straightforward radical thiol‐ene reaction. The polymer solutions are thoroughly characterized hydrodynamically. Subsequently, propylene carbonate‐based solutions of both materials are prepared to allow an assessment for future energy storage applications. This is done by testing battery characteristics in a custom‐made flow‐cell with a simple dialysis membrane for physical separation of the active materials. The capability of energy storage is verified by leaving the charged materials in solution in an open circuit for 24 h. Here, more than 99% of the stored charges can be recovered. Cycling the battery for 100 times reveals the remarkable stability of the materials of only 0.2% capacity loss per day in the battery setup

    Emulsion polymerizations for a sustainable preparation of efficient TEMPO‐based electrodes

    Get PDF
    Organic polymer‐based batteries represent a promising alternative to present‐day metal‐based systems and a valuable step toward printable and customizable energy storage devices. However, most scientific work is focussed on the development of new redox‐active organic materials, while straightforward manufacturing and sustainable materials and production will be a necessary key for the transformation to mass market applications. Here, a new synthetic approach for 2,2,6,6‐tetramethyl‐4‐piperinidyl‐ N ‐oxyl (TEMPO)‐based polymer particles by emulsion polymerization and their electrochemical investigation are reported. The developed emulsion polymerization protocol based on an aqueous reaction medium allowed the sustainable synthesis of a redox‐active electrode material, combined with simple variation of the polymer particle size, which enabled the preparation of nanoparticles from 35 to 138 nm. Their application in cell experiments revealed a significant effect of the size of the active‐polymer particles on the performance of poly(2,2,6,6‐tetramethyl‐4‐piperinidyl‐ N ‐oxyl methacrylate) (PTMA)‐based electrodes. In particular rate capabilities were found to be reduced with larger diameters. Nevertheless, all cells based on the different particles revealed the ability to recover from temporary capacity loss due to application of very high charge/discharge rates.Sustainable and efficient organic electrode : A new synthetic approach for polymers for organic batteries includes an emulsion polymerization with adjustable particle sizes in aqueous dispersions and allows the sustainable manufacturing of active materials and composite electrodes. The electrochemical investigation shows that the influence of particle sizes and the resulting morphologies of composite films on the cell performance is as important as the active material itself

    Sox2 Is Essential for Formation of Trophectoderm in the Preimplantation Embryo

    Get PDF
    In preimplantation mammalian development the transcription factor Sox2 (SRY-related HMG-box gene 2) forms a complex with Oct4 and functions in maintenance of self-renewal of the pluripotent inner cell mass (ICM). Previously it was shown that Sox2-/- embryos die soon after implantation. However, maternal Sox2 transcripts may mask an earlier phenotype. We investigated whether Sox2 is involved in controlling cell fate decisions at an earlier stage.We addressed the question of an earlier role for Sox2 using RNAi, which removes both maternal and embryonic Sox2 mRNA present during the preimplantation period. By depleting both maternal and embryonic Sox2 mRNA at the 2-cell stage and monitoring embryo development in vitro we show that, in the absence of Sox2, embryos arrest at the morula stage and fail to form trophectoderm (TE) or cavitate. Following knock-down of Sox2 via three different short interfering RNA (siRNA) constructs in 2-cell stage mouse embryos, we have shown that the majority of embryos (76%) arrest at the morula stage or slightly earlier and only 18.7-21% form blastocysts compared to 76.2-83% in control groups. In Sox2 siRNA-treated embryos expression of pluripotency associated markers Oct4 and Nanog remained unaffected, whereas TE associated markers Tead4, Yap, Cdx2, Eomes, Fgfr2, as well as Fgf4, were downregulated in the absence of Sox2. Apoptosis was also increased in Sox2 knock-down embryos. Rescue experiments using cell-permeant Sox2 protein resulted in increased blastocyst formation from 18.7% to 62.6% and restoration of Sox2, Oct4, Cdx2 and Yap protein levels in the rescued Sox2-siRNA blastocysts.We conclude that the first essential function of Sox2 in the preimplantation mouse embryo is to facilitate establishment of the trophectoderm lineage. Our findings provide a novel insight into the first differentiation event within the preimplantation embryo, namely the segregation of the ICM and TE lineages

    Maternally and zygotically provided Cdx2 have novel and critical roles for early development of the mouse embryo

    Get PDF
    Divisions of polarised blastomeres that allocate polar cells to outer and apolar cells to inner positions initiate the first cell fate decision in the mouse embryo. Subsequently, outer cells differentiate into trophectoderm while inner cells retain pluripotency to become inner cell mass (ICM) of the blastocyst. Elimination of zygotic expression of trophectoderm-specific transcription factor Cdx2 leads to defects in the maintenance of the blastocyst cavity, suggesting that it participates only in the late stage of trophectoderm formation. However, we now find that mouse embryos also have a maternally provided pool of Cdx2 mRNA. Moreover, depletion of both maternal and zygotic Cdx2 from immediately after fertilization by three independent approaches, dsRNAi, siRNAi and morpholino oligonucleotides, leads to developmental arrest at much earlier stages than expected from elimination of only zygotic Cdx2. This developmental arrest is associated with defects in cell polarisation, reflected by expression and localisation of cell polarity molecules such as Par3 and aPKC and cell compaction at the 8- and 16-cell stages. Cells deprived of Cdx2 show delayed development with increased cell cycle length, irregular cell division and increased incidence of apoptosis. Although some Cdx2-depleted embryos initiate cavitation, the cavity cannot be maintained. Furthermore, expression of trophectoderm-specific genes, Gata3 and Eomes, and also the trophectoderm-specific cytokeratin intermediate filament, recognised by Troma1, are greatly reduced or undetectable. Taken together, our results indicate that Cdx2 participates in two steps leading to trophectoderm specification: appropriate polarisation of blastomeres at the 8- and 16-cell stage and then the maintenance of trophectoderm lineage-specific differentiation
    corecore