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Introduction

ABSTRACT

Divisions of polarised blastomeres that allocate polar cells to outer and apolar cells to inner positions initiate
the first cell fate decision in the mouse embryo. Subsequently, outer cells differentiate into trophectoderm
while inner cells retain pluripotency to become inner cell mass (ICM) of the blastocyst. Elimination of zygotic
expression of trophectoderm-specific transcription factor Cdx2 leads to defects in the maintenance of the
blastocyst cavity, suggesting that it participates only in the late stage of trophectoderm formation. However,
we now find that mouse embryos also have a maternally provided pool of Cdx2 mRNA. Moreover, depletion
of both maternal and zygotic Cdx2 from immediately after fertilization by three independent approaches,
dsRNAI, siRNAi and morpholino oligonucleotides, leads to developmental arrest at much earlier stages than
expected from elimination of only zygotic Cdx2. This developmental arrest is associated with defects in cell
polarisation, reflected by expression and localisation of cell polarity molecules such as Par3 and aPKC and cell
compaction at the 8- and 16-cell stages. Cells deprived of Cdx2 show delayed development with increased
cell cycle length, irregular cell division and increased incidence of apoptosis. Although some Cdx2-depleted
embryos initiate cavitation, the cavity cannot be maintained. Furthermore, expression of trophectoderm-
specific genes, Gata3 and Eomes, and also the trophectoderm-specific cytokeratin intermediate filament,
recognised by Tromal, are greatly reduced or undetectable. Taken together, our results indicate that Cdx2
participates in two steps leading to trophectoderm specification: appropriate polarisation of blastomeres at
the 8- and 16-cell stage and then the maintenance of trophectoderm lineage-specific differentiation.

© 2010 Elsevier Inc. Open access under CC BY license

try as they distribute key factors for trophectoderm formation, such as
cell polarity molecules and Cdx2 mRNA, asymmetrically between the

The separation of the pluripotent ICM from the trophectoderm by
the blastocyst stage is the first cell fate decision in the mouse embryo.
The ICM provides progenitors for all cells of the future body, while
trophectoderm provides an extra-embryonic tissue, which supports
embryo development in the uterus and provides signalling sources to
pattern the embryo before gastrulation. The formation of these two
tissues occurs in two successive stages. First, cells are allocated to
either inside and outside positions via so called differentiative, or
asymmetric, divisions that occur in two waves, at the 8- to 16-cell and
the 16- to 32-cell stages (Graham and Deussen, 1978; Jedrusik et al.,
2008; Johnson and Ziomek, 1982; Pedersen et al., 1986). These
divisions contribute to the establishment of inside-outside asymme-
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daughter cells (Plusa et al., 2005; Thomas et al., 2004; Jedrusik et al.,
2008). Second, once cell divisions have generated inside and outside
cell populations, molecular mechanisms sensing cell position can
influence transcription from the Cdx2 locus such that its expression is
suppressed in the inner cells but enhanced in outer cells. Recent
evidence implicates the Hippo signalling pathway in this mechanism
(Nishioka et al., 2009; Nishioka et al., 2008; Yagi et al., 2007). The
initiation of the asymmetry in distribution of Cdx2 protein appears to
be important for down-regulating the expression of Oct4 and Nanog in
the outside cells, and ensuring that the ICM and trophectoderm
lineages are segregated by the blastocyst stage (Niwa et al., 2005;
Strumpf et al., 2005). Thus, it appears that both cell polarity and cell
position affect this first cell fate decision.

Although Cdx2 is a key trophectoderm-specific transcription
factor, the stage at which it starts to act and the processes it controls
still remain unclear. Embryos in which zygotic expression of Cdx2 was
prevented were reported to develop normally until the late blastocyst
stage, which led the authors to suggest that Cdx2 is not involved in the
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processes essential for initiation of trophectoderm formation, such as
cell polarisation or cell allocation, but only much later in maintenance
of trophectoderm (Ralston and Rossant, 2008; Strumpf et al., 2005).
However, more recent studies opened up a possibility for an earlier
role of Cdx2. First, it was found that up-regulation of Cdx2 expression
before the 8-cell stage, affects the extent of cell polarisation and cell
allocation to inside versus outside positions: more Cdx2 led to more
cell polarity, measured by apical localisation of aPKC and to more
symmetric divisions that consequently generate more trophectoderm
than ICM (Jedrusik et al., 2008). Second, depletion of Cdx2 before the
8-cell stage in just a part of a normally developing embryo, led to the
opposite outcome: Cdx2-depleted cells more often divided asymmet-
rically contributing to the ICM rather than trophectoderm. Thus,
modulating Cdx2 expression by the 8-cell stage led to an earlier
phenotype than that described for the zygotic Cdx2 knockout.
Moreover, this early role of Cdx2 seemed consistent with reports
that Cdx2 protein is already present by the 8-cell stage, and thus by
the time of cell polarisation and compaction (Jedrusik et al., 2008;
Ralston and Rossant, 2008). One possible explanation of these
different outcomes would be that one study depleted Cdx2 through-
out the whole embryo (Ralston and Rossant, 2008; Strumpf et al.,
2005), while the other (Jedrusik et al., 2008) generated embryos in
which Cdx2-depleted and Cdx2-expressing cells developed side by
side, making it possible to follow the precise behaviour and
“competition” between these two cell types by time-lapse studies.
The alternative explanation of these different outcomes that there
might be a maternal pool of Cdx2 mRNA which would be eliminated in
only one of these studies, as it is susceptible to RNAI, but still present
in Cdx2~/~ embryos, initially seemed less likely. This is because the
paper claiming existence of the maternal Cdx2 in the zygote has been
retracted (Roberts et al., 2007). However, whether there is indeed a
pool of maternally inherited Cdx2 mRNA in the early mouse embryo
and whether this has any function have never been rigorously tested.

In this study, we show evidence that mouse embryos have
maternally provided Cdx2 mRNA and that this early pool of Cdx2 is
required for normal development at much earlier stages than
previously suspected. We find that depletion of maternal and zygotic
Cdx2 from the early zygote stage leads to developmental arrest
associated with abnormal cell polarisation and cell compaction at the
8- to 16-cell stage transition. Such embryos also show slower
developmental progression measured by an increased cell cycle
length, irregular cell divisions and increased incidence of cell death.
These results lead us to propose a model in which Cdx2 is involved in
both initiating and subsequently committing proper trophectoderm
formation.

Materials and methods
Embryo collection and culture

In experiments performed in Cambridge, embryos were collected
into M2 medium with 4 mg/ml BSA from 4- to 6-week-old F1
(C57Bl6x CBA) females superovulated with 7.5 [U of pregnant mare's
serum gonadotropin (PMSG; Intervet) and 7.5 IU human chorionic
gonadotropin (hCG; Intervet) 48 hours later and mated with F1 or
H2B-EGFP males (Hadjantonakis and Papaioannou, 2004). Zygotes
were released from ampullae of oviducts 20 hours after hCG and
cumulus cells were removed by hyaluronidase treatment and
pipetting in M2 medium. Embryos were cultured in drops of KSOM
with 4 mg/ml BSA under paraffin oil in 5% CO, at 37.5 °C in groups of
10-15 per 20l drop. In one experiment assaying the effect of
inhibiting zygotic transcription, embryos were cultured in KSOM
supplemented c-amanitin (24 pg/ml) from the 4- to 8-cell transition
until the early 16-cell stage when they were fixed. Experiments
confirming the efficacy of a-amanitin treatment were first performed
by treatment of zygotes with a-amanitin (24 pg/ml-20 hours post

hCG) and culturing until the late 2-cell stage, before embryos were
harvested for real-time PCR (see below).

In experiments performed at Stanford, involving microinjection of
antisense morpholino oligonucleotides, all 3- to 5-week-old wild-type
F1 (C57BL6XDBA/2) females (Charles River) were superovulated by
intraperitoneal injections of 5 IU of PMSG followed by 5 IU of hCG
48 hours later and mated overnight with wild-type males. Zygotes
were released from oviducts 17 hours after hCG injection, pooled from
3 to 6 females in M2 media (Chemicon International), followed by
immediate cytoplasmic microinjection and culture in Human Tubal
Fluid with 10% serum supplement (In-Vitro Fertilization, Inc.)
microdrops under mineral oil in 5% CO, at 37 °C and cultured at 8-
10 embryos per 20 pl drop.

Cdx2 dsRNA and Cdx2 siRNA microinjection and time-lapse imaging

dsRNA against Cdx2 was prepared and microinjected as described
previously (Jedrusik et al., 2008) at the concentration of 0.7 pg/pl. A
Cdx2-specific siRNA (GCAGTCCCTAGGAAGCCAAATAT) and a control
oligo (medium GC: Cat. No. 12935-112) were purchased from the pre-
designed Invitrogen catalogue and were diluted to 8 uM prior to
microinjection, as per manufacturer's instructions. The success of each
injection was monitored by co-injecting mRNA for DsRed as a control
(0.3 pg/ul). Zygotes were injected 20-22 hours after hCG, cultured to
the late 2-cell stage and development of individual embryos and of all
their cells were followed in 4D by time-lapse microscopy and
analysed with SIMI Biocell software as described previously (Bischoff
et al, 2008). Fluorescence and DIC Z-stacks were collected for
approximately 72 hours, every 15 minutes, on 15 different planes
for each time point, from 2-cell to blastocyst stage. Initiation of cell
division was defined as the start of cleavage furrow ingression (in DIC
images) and metaphase formation (in fluorescence images). In the
case of siRNA injected embryos, development was followed in 10
embryos by time-lapse microscopy and 48 were examined manually
by periodic examination.

To examine whether depletion of Cdx2 by dsRNA is specific and
can therefore be rescued, Cdx2-dsRNA treated embryos were co-
injected with a synthetic mRNA for Cdx2 (50 ng/pl), a concentration
previously shown to be non-toxic (Jedrusik et al., 2008). Development
of such embryos was assessed alongside control embryos and
embryos injected with only Cdx2-specific dsRNA using time-lapse
microscopy (as described above) or by regular “manual” inspection of
embryos. The rescue experiment was performed twice on a total of 21
embryos.

Immuno-cytochemical staining

Embryos were fixed in 4% PFA for 20 minutes at 37 °C and treated
for immuno-fluorescence as previously described (Plusa et al., 2005).
Cdx2 was visualised using mouse antibody (mouse monoclonal,
BioGenex) at 1:200 in BSA/Tween and AlexaFluor 488-conjugated
anti-mouse secondary antibody at 1:500 (Jackson ImmunoResearch
Laboratories). For aPKC, rabbit antibody (Santa Cruz) at 1:200 and
AlexaFluor 488-conjugated anti-rabbit antibody at 1:200 (Invitrogen)
were used. Trophectoderm-specific cytokeratins were recognised
with rat Tromal antibody (1:100, DSHB, lowa) and AlexaFluor 488-
conjugated anti-rat antibody (1:200). To visualise p-catenin, embryos
were fixed in 4% PFA with 0.1% Tween 20 and 0.01% Triton X-100
overnight at 4 °C, permeabilised in 0.55% Triton X-100 in PBS for
15 minutes and blocked in 10% foetal bovine serum in PBS for 1 hour.
Rabbit anti 3-catenin (Invitrogen) at 1:100 and secondary AlexaFluor
488-conjugated anti-rabbit antibody at 1:200 were used. Cleaved
caspase 3 was detected using rabbit anti-caspase 3 (cleaved) antibody
(1:1000) and AlexaFluor 488-conjugated anti-rabbit antibody at
1:200 (Invitrogen). For Cdx2 and Eomes co-immuno-staining embry-
os were fixed in 2.5% PFA for 15 minutes at room temperature.
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Following fixation embryos were washed in PBS and permeabilised
for 30 minutes in 0.25% Triton X-100. Prior to antibody incubation,
embryos were blocked in 10% foetal bovine serum in 0.01% Triton X-
100. Cdx2 was visualised as described above. For Eomes detection,
rabbit anti-Eomes antibody (Abcam) at 1:500 was used. Apoptotic cell
death was also confirmed by performing a TUNEL assay on Cdx2-
depleted and control embryos (Roche). Embryos were fixed in 4% PFA
for 15 minutes at room temperature, washed three times in PBS/PVP
and permeabilised for 2 minutes in 0.1% Triton X-100 with 0.1%
sodium citrate in PBS on ice. Embryos were then washed three times
in PBS/PVP and incubated in TUNEL reaction mixture (Roche) for
1 hour at 37 °C in the dark. As positive control, prior to TUNEL
reaction, embryos were incubated in micrococcal nuclease reaction
(Bio Labs) for 20 minutes at 37 °C and washed three times in PBS/PVP.
As negative control embryos were incubated in label solution only (no
enzyme) during TUNEL incubation. After antibody incubations and
washes, embryos were mounted in DAPI-Vectashield on poly-lysine
slides. Cells were imaged on an Olympus upright confocal.

Whole-mount RNA fluorescence in situ hybridisation (RNA FISH)

FISH was performed according to Chazaud et al. (2006). To
counter-stain nuclei, embryos were treated with 300nM DAPI
(Molecular Probes) in PBS. Fluorescence was detected on an
LSM510 META laser scanning confocal microscope (Zeiss) with a
40x Plan-Neofluar oil immersion objective. RNA probes for Cdx2 and
Emx2 (negative control) were generated by the direct in vitro
transcription of PCR-generated DNA template. Cdx2 antisense probe
derived using Cdx2F1/Cdx2R1T7 primer pairs and sense probe using
Cdx2F1T7/Cdx2R1 primers (Cdx2F1—TCGCCACCATGTACGTGAGC-
TACCT; Cdx2R1—TTCAGACCACGGGAGGGGTCACTG; Cdx2F1T7—TAA-
TACGACTCACTATAGGGATGTACGTGAGCTACCTTC; Cdx2R1T7—
TAATACGACTCACTATAGGGAGGGGTCACTGGGTGACAG). Antisense
probe for Emx2 derived using Emx2F1/Emx2R1T7 primer pairs
(Emx2F1-TGAATGATCCTTGTGAGGC; Emx2R1T7-—
TAATACGACTCACTATAGGGCCTGCTCCCTCATTTCTC).

Real-time RT-PCR

Total RNA was prepared from embryos that had been micro-
injected with dsRNA specific for Cdx2 transcript (and DsRed mRNA
to confirm injection) at the early zygote stage and subsequently
cultured to the mid 2-, 4-, 8- or 16-cell stage. Similarly, RNA was also
prepared from control embryos that had been cultured from the
zygote stage after injection with DsRed mRNA only. Additionally,
mRNA was also prepared from 2-cell embryos cultured with or
without ac-amanitin from the early zygote stage. Fifty embryos for
each condition were transferred to 20l of extraction buffer
(Arcturus Biosciences; ‘PicoPure RNA isolation kit’) and mixed
with 20l of 70% ethanol. After following the manufacturer's
protocol, total RNA was eluted into 10pl of water and any
contaminating DNA digested by DNasel treatment (Ambion; ‘DNA-
free’ kit). All the resulting uncontaminated RNA was then reverse
transcribed using oligodT priming in 20-pl reactions (Invitrogen;
‘Superscript Il Reverse Transcriptase’). Synthesised cDNA (0.5 pl per
reaction) was then used as template in 25-pl real-time reactions
(Applied Biosystems: ‘SYBR Green master-mix’) using oligonucleo-
tide primers (final conc. 400nM) specific for either mouse Actb
(GCTCTTTTCCAGCCTTCCTT and CGGATGTCAACGTCACACTT), Cdx2
(TCAAGAAGAAGCAGCAGCAG and GCAAGGAGGTCACAGGACTC),
Eomes (TCAGATTGTCCCTGGAGGTC and CTCTGTTGGGGTGAGAG-
GAG) Tead4 (GAGCCCGGAGAACATGATTA and CCAAATGAGCA-
GACCTTCGT), Gata3 (CCGAAACCGGAAGATGTCTA and
AGATGTGGCTCAGGGATGAC), Oct4 (GGAAAAGGGACTGAGTA-
GAGTGTGG and TTGGGCTAGAGAAGGATGTGGTT), Nanog
(TGCAATGGATGCTGGGATACTC and GGTTGAAGACTAG-

CAATGGTCTGA), E-cadherin (AGACTTTGGTGTGGGTCAGG and CATGCT-
CAGCGTCTTCTCTG), aPKC (AGCCCCAGATCACAGATGAC and
TCAAATTCGGACTGGTCGAT), Parl (CCCATTGACACCATCAACTCT and
TGTGGAACCTCTCCCTGACT), Par3 (AGCCTTCTGGTCTTTCGTCA and
GGGTGTGAGAACAACGTCCT), Eifla (AGGCGCAGAGGTAAAAATGA and
ATATGGCACAGCCTCCTCAC) or Mdm4 (GCGCGAGAGAACAAACAGAT
and GGCTCGTCTTCCCATGAATA) transcripts. All transcript levels were
normalised against Actb, in each condition, using the AACt method
(Livak and Schmittgen, 2001) and expressed as percentage of total
knockdown within a particular stage (assaying Cdx2 mRNA after RNAi:
Fig. 1B), as relative expression fold change (after Cdx2 RNAi at 16-cell
stage: Fig. 4B) or normalised absolute expression versus Actb (Fig. 4B’).

Microinjection of antisense morpholino oligonucleotides

25-nt, antisense morpholino oligonucleotides (MOs) that specif-
ically target the translational start site or 5'UTR were purchased from
Gene Tools, LLC. The sequence for these morpholinos are as follows:
Cdx2-MO1 5'-TGTCCAGAAGGTAGCTCACGTACAT-3"; Cdx2-MO2 5'-
AGGGACCCAGAGCAGACCTCACCAT-3"; Control-MO 5'-
TCCAGGTCCCCCGCATCCCGGATCC-3". We had previously determined
0.6 mM to be the maximal concentration that would allow normal
rates of blastocyst development (data not shown). Hence, unless
otherwise specified, 5-10 pl of 0.6 mM of either Cdx2-MO1, Cdx2-
MO2 or Control-MO was injected into the cytoplasm of each zygote on
an inverted microscope (Olympus [X70) equipped with hydraulic
micromanipulation system (IM300 Microinjector, Narishige, Japan).
At least 8-10 embryos were used for each of the conditions,
uninjected, control-MO, Cdx2-MO1 and Cdx2-MO2 in each experi-
ment, which was performed three times, except for Cdx2-MO2, which
was tested two times.

Control morpholino oligonucleotides

In each experiment, uninjected embryos and embryos injected
with a control morpholino (Control-MO) were tested in parallel with
Cdx2-MO1- and Cdx2-MO2-mediated knockdown. The Control-MO
was designed to specifically target the human globin gene promoter
(Gene-tools, Inc.), which is not present in the mouse genome. We had
tested this Control-MO morpholino when establishing our methods
and found that its presence did not affect blastocyst developmental
rates. Importantly, genes that were previously validated to be
differentially-expressed between uninjected and Oct4-MO-injected
embryos were also confirmed to show no differential expression
between un-injected and Control-MO-injected embryos (Foygel et al.,
2008).

Statistical analysis

The mean percentage and standard error of the mean (mean
4+ SEM) of embryos progressing to, or arresting at, each developmen-
tal stage were calculated, and statistical significance was determined
by calculating the p-value using two-tailed Student's t-test.

Results
Maternal Cdx2 mRNA is present in the early mouse embryo

We have previously described genome-wide patterns of mRNA
expression throughout the pre-implantation stages of mouse devel-
opment (Wang et al., 2004). In closely analysing these data, we were
surprised to note low, yet significant, expression of the trophecto-
derm-specific transcription factor Cdx2 in GV stage and MII arrested
oocytes, zygotes and 2-cell stage embryos (Fig. 1A). Although
expression of Cdx2 has been previously reported at these earlier
stages (Deb et al., 2006), this paper was later retracted (Roberts et al.,
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‘a’) reflects protein synthesised from transcript present in embryos by the 4-cell stage. This Cdx2 protein is lost if the embryos are pre-treated with Cdx2-specific RNAi (sub-panel ‘d’). Control embryo group n= 10, a-amanitin alone treated
group n =8 and a-amanitin plus Cdx2 RNAI treated group n=7. Scale bar 10 pm.

82-99 (0102) #¥€ ABojorg [paudwdojanaq / ‘b 32 Nisnipaf vy

69



70 A. Jedrusik et al. / Developmental Biology 344 (2010) 66-78

2007), leaving the prevailing view that Cdx2 mRNA is not expressed
until after the activation of the zygotic genome and not earlier than at
the 8-cell stage (Jedrusik et al., 2008; Ralston and Rossant, 2008).
With this in mind, we decided to independently verify the presence
of Cdx2 mRNA during these earlier stages, using both quantitative RT-
PCR and RNA fluorescence in situ hybridisation (FISH) approaches
(Figs. 1B-D). Quantitative RT-PCR allowed us to detect Cdx2 mRNA at
the 2-, 4-, 8- and 16-cell stages. Moreover, we found that this Cdx2
mRNA could be efficiently depleted by the 2-cell stage by injection of
dsRNA specific for Cdx2 into the early zygote as judged by both
quantitative RT-PCR (Fig. 1B) and by FISH (Fig. 1C). Together, these
multiple lines of experimentation provide evidence that Cdx2 mRNA
must have a maternal origin in mouse embryos, as suggested by the
microarray analysis (Fig. 1A), since the major burst of zygotic genome
activation (ZGA), and hence zygotic transcription, only occurs at the
late 2-cell stage. A FISH assay of early zygotes confirming the
presence of Cdx2 transcripts further supports this interpretation
(Fig. 1D).

We could detect the first clear localisation of Cdx2 protein in
blastomeres' nuclei at the 8-cell stage. The presence of Cdx2 protein
was very heterogeneous at this stage with some blastomeres having
clearly much higher Cdx2 levels than others (Supplementary Fig. 1),
in support of some previous observations (Yagi et al., 2007; Jedrusik
et al., 2008; Ralston and Rossant, 2008), but in contrast to another
which described absent or low levels of Cdx2 at the 8-cell stages
becoming up-regulated in all 8-cell blastomeres (Dietrich and Hiiragi,
2007). It is possible that Cdx2 protein is present at an even earlier
developmental stage, but the sensitivity of available antibodies
against Cdx2 do not allow, in our hands, its robust and reproducible
detection before the 8-cell stage. From the 16-cell stage onwards,
Cdx2 levels increased consistently with the increase in Cdx2
transcripts from this time (Fig. 1A). In order to distinguish between
protein made from the early pool of Cdx2 mRNA from that made after
robust up-regulation of zygotic Cdx2 at the 16-cell stage (Fig. 1A), we
used a-amanitin to block transcription from the 4- to 8-cell stage
transition until the early 16-cell stage and assessed Cdx2 protein
levels by immuno-fluorescence. After confirming the efficacy of o-
amanitin treatment (Supplementary Fig. 2), we found that inhibition
of transcription prevented the increase in Cdx2 protein at the 16-cell
stage, in comparison to control embryos, although low levels of Cdx2
were clearly detectable in cell nuclei (Fig. 1E), indicating that this
protein was the result of translation of transcripts already present by
the 4-cell stage. Although we cannot eliminate a possibility that these
transcripts may be the products of early zygotic transcription, the fact
that Cdx2 mRNA levels change very little from the zygote to 16 cell
stages (Fig. 1A) and that after the depletion of this early pool of Cdx2
transcripts by RNAi, the presence of this Cdx2 protein was lost
(Fig. 1E), provides further supporting evidence of the existence of
maternal Cdx2 mRNA that become translated as development
progresses.

Depletion of maternal and zygotic Cdx2 from the zygote stage affects
development before the blastocyst stage

This unexpected detection of an early pool of Cdx2 mRNA raised
the question of whether it has any developmental function. To address
this, we first used an RNAi approach that has been shown previously
to be highly effective in assessing gene expression in oocytes and pre-
implantation mouse embryos (Wianny and Zernicka-Goetz, 2000;
Svoboda et al.,, 2000), as this would allow us to eliminate both the
detected maternal and subsequent zygotic transcripts at the same
time. This approach therefore would offer a different perspective from
the Cdx2~/~ knockout study (Strumpf et al, 2005), where any
maternal contribution of Cdx2 from the heterozygous Cdx2™/~
mother would persist and so mask or delay the onset of phenotype
in homozygous Cdx2~/ ~ embryos.

To assess the function of this early pool of Cdx2, we down-regulated
its expression by injecting early zygotes, immediately after fertilization,
with dsRNA for Cdx2, which we previously shown to specifically
eliminates Cdx2 mRNA in the mouse embryo (Jedrusik et al., 2008). We
confirmed that this treatment led to down-regulation of Cdx2 mRNA by
the 2-cell stage (Figs. 1B, C) and that Cdx2 protein remained depleted
until the blastocyst stage (Fig. 2C). In order to characterise in detail
developmental progression of Cdx2-depleted along side control
embryos, we filmed them from the late 2-cell to the blastocyst stage.
By taking a series of 15 optical sections through the embryo at each
time point allowed us to follow the timing and orientation of all cell
divisions, cell positions and behaviour of all individual cells for 72
hours, thus until their reach the blastocyst stage. With the help of the
Simi Biocell software (Schnabel et al,, 1997), we generated lineage trees
for all experimental and control embryos (Figs. 2D-H).

We found that depletion of both maternal and zygotic Cdx2 led to
developmental arrest of 88.6 4+ 10.3% (n=18) embryos compared to
0% of developmental arrest for the two control groups of embryos,
either non-injected (n=15) or injected with mRNA for DsRed only
(n=20) and 8.6 & 2.4% injected with dsRNA for a control gene (mean +
standard error of the mean, SEM) (Fig. 2A). This developmental arrest
was significantly higher than those of all three control groups (t-test,
p<0.05). Importantly, we observed that 63.2418.8% of such Cdx2-
depleted embryos arrested prior to blastocyst cavitation. The live
imaging approach allowed us to distinguish two separate groups of
embryos based on onset of developmental defects when compared to
control embryos (Figs. 2D-G). The first group, which comprised half of
all embryos, consisted of those that arrested already at 8- to 16-cell
transition (Figs. 2D and 3A; Supplementary Movie 1). The majority of
embryos in this group (67%; n=9) neither underwent compaction
nor initiated cavitation, in stark contrast to embryos in which only the
zygotic Cdx2 was eliminated, in which the first defects were reported
much later at the blastocyst stage (Ralston and Rossant, 2008; Strumpf
et al,, 2005). Only in two embryos was cavity formation initiated, but
in both of these cases the cavity collapsed soon after its formation. The
second group of embryos also arrested, but at slightly later stages
(Figs. 2E, F and 3A). We found that although these embryos were able
to progress beyond the 16-cell stage and often initiate compaction
(89%; 8/9) and cavitation (78%, 7/9), these processes were much
delayed. Moreover, embryos in this group also showed morphological
abnormalities such as a pre-compaction appearance and increased
incidence of cell death (Fig. 3A, see also later). Time-lapse imaging of
these embryos revealed that their cavities collapsed (Supplementary
Movies 2 and 3). Control embryos showed normal development to the
blastocyst stage (Fig. 2G).

We also analysed the cell cycle progression upon Cdx2 down-
regulation. This revealed that Cdx2-depleted embryos displayed unusu-
ally increased cell cycle lengths compared to control embryos. In the first
group of embryos, this started to be evident already at the third cell cycle,
the stage immediately preceding that in which most blastomeres
arrested (Fig. 2B). In the second group, the increased cell cycle lengths
were less pronounced although the duration of the fifth cell cycle was
particularly increased prior to developmental arrest (Fig. 2B).

Although it has been previously demonstrated that microinjection
of dsRNA into the oocyte or zygote has no adverse effect on
development, unless the injected dsRNA targets transcripts with
integral roles (Svoboda et al., 2000; Wianny and Zernicka-Goetz,
2000), we carried out three control sets of experiments to address
whether the above described phenotypic effects were specific to Cdx2
depletion. In the first set of control experiments, we microinjected
embryos with control dsRNA or with DsRed mRNA alone to control for
an injection procedure and monitor their developmental progression
by time-lapse observations. We found both group of control embryos
did not have any defects in their developmental progression or cell
cycle length (Figs. 2A, B and G). In the second set of control
experiments, we microinjected zygotes with Cdx2-specific dsRNA
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but also with a synthetic Cdx2 mRNA, at a concentration previously
shown to be non-toxic (Jedrusik et al., 2008). Time-lapse observations
revealed that 80% (n=21; two independent experiments) of such
Cdx2-RNAi embryos were completely rescued by injecting them with
synthetic Cdx2 mRNA and reached the cavitated blastocyst stage in
contrast to embryos injected in parallel with Cdx2-specific dsSRNA
alone (Fig. 2H and Supplementary Movie 5), providing evidence that
the Cdx2-RNAi was specific for Cdx2 transcripts. Finally, in the third

A Developmental arrest
100 . Arrest by morula stage

B cell cycle length

set of control experiments, we followed the effects of down-
regulating Cdx2 by an independent construct, Cdx2-specific siRNA
purchased from the Invitrogen siRNA catalogue (Supplementary
Fig. 3A; Supplementary Movie 4). We found that 69% (n=58) of the
Cdx2 siRNA-treated embryos arrested at the multicellular stage
without initiating cavitation, similarly to group 1 of dsRNA Cdx2-
depleted embryos described above. Although the remaining embry-
os developed further and could form ‘blastocyst-like’ structures,
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their development was delayed and showed similar defects to those
observed in the group 2 of dsRNA Cdx2-depleted embryos. We
confirmed that microinjection of Cdx2 siRNA led to down-regulation
of Cdx2 by Cdx2-specific immuno-staining, which revealed that the
most severely affected embryos had little or no detectable Cdx2
protein, while the more mildly affected embryos had much lower
Cdx2 protein levels when compared to controls (Supplementary
Fig. 3B). When negative control siRNA were injected at the same
developmental stage, 83.3% (n=18) of embryos developed normally
to the blastocyst stage. Accordingly, the siRNA phenotype is in
strong accord with that obtained using a long dsRNA RNAi-based
approach.

Taken together, our results indicate that depletion of an early pool
of Cdx2 has a severe effect upon normal development. Such defects are
first clearly manifested at the 8- to 16-cell transition, indicative of a
hitherto unrealized early functional role of Cdx2 during pre-
implantation development.

Depletion of maternal and zygotic Cdx2 from the zygote stage affects cell
survival and cell allocation

To gain further insight into the underlying reasons for such severe
developmental defects upon maternal and zygotic Cdx2 depletion, we
first analysed the behaviour of every single individual cell within the
embryo as development progressed. This revealed unexpectedly high
frequency of cell death in 78% (n=18) of Cdx2-depleted embryos
(Figs. 3A, B). On average, 4 cells (4.1 4 3.5) per embryo died, although
in some embryos all cells died (Fig. 3A). We used two assays to
characterise this cell death further: the TUNEL assay and immuno-
reactivity for cleaved caspase 3, both of which indicated an apoptotic
mechanism (Figs. 3C, D). In those embryos that had progressed
beyond the 8-cell stage and so had both inside and outside cells,
similar numbers of inner as outer cells died (on average 1.6+1.8
inside versus 1.9+ 3.0 outside) (Fig. 3B; Supplementary Table 1).
Thus, cell death in Cdx2-depleted embryos did not discriminate
between these compartments. This was an unexpected result as cell
death is normally observed not earlier than at the blastocyst stage and
was reported to be confined to the ICM (Copp, 1978). Moreover,
elimination of Cdx2 by the same RNAi approach, but at a later
developmental stage, in our previous studies did not result in cell
death (Jedrusik et al., 2008).

The analysis of the precise spatial allocations of cells and their
numbers in those Cdx2-depleted embryos that progressed beyond 16-
cell stage, revealed that the contribution of cells to the inside part of
the embryo was slightly greater than in control embryos. On average,
41.3% of the total number of cells were in inside positions compared to
32.4% in the control embryos, injected with DsRed mRNA alone
(Supplementary Table 1). This increased inner contribution after
Cdx2-depletion is in agreement with previous observations that cells
with lower Cdx2 levels tend to contribute more to the ICM (Jedrusik et

al., 2008). Taken together, these results provide evidence that correct
pre-implantation development and spatial allocation of cells to
outside positions involve Cdx2 expression and suggest that Cdx2
function is specific to developmental stage.

Depletion of early pool of Cdx2 affects cell polarity and blastocyst
cavitation

As described above, continuous monitoring of embryogenesis
revealed that developmental phenotypes associated with Cdx2
depletion from immediately after fertilization become initiated
much earlier than previously suspected and relate to problems with
cell division, cell compaction and allocation. This led us to examine
whether the depletion of this early pool of Cdx2, might affect apical-
basal polarisation of blastomeres that is initiated at the 8-cell stage
(Johnson and Ziomek, 1982). To this end, we examined the expression
and spatial localisation of a number of known polarity markers at both
the mRNA and protein levels at the 8-cell and 16-cell stages (Fig. 4).
We found that 80% of embryos (n=10) deprived of Cdx2 showed
expression of aPKC protein at the 8-cell stage, but its apical
localisation was clearly decreased, in comparison to control embryos
(Fig. 4A). Similar mis-localisation and down-regulation of aPKC
protein was found in embryos targeted with Cdx2-specific siRNA
(Supplementary Fig. 3C). By the mid 16-cell stage, the aPKC mRNA
expression in Cdx2-depleted embryos was undetectable in compar-
ison to control embryos (Figs. 4B, B’). In addition, other polarity
marker gene mRNASs, such as Par1, Par3 and E-cadherin, were similarly
undetectable after Cdx2 depletion at this stage (Figs. 4B, B’), indicative
of substantial defects in cell polarisation. We also observed increased
[3-catenin protein levels in the nuclei of Cdx2-depleted 8-cell embryos
(8/9 embryos) consistent with a defect in the B-catenin localisation
mechanism (Fig. 4A), possibly related to the reduced E-cadherin
mRNA levels which were observed by the 16-cell stage. The
consequences of this disrupted cell polarisation were apparent at
the time of cavitation, even in embryos with seemingly unaffected
development (as judged by the lineage tree generated with SIMI
Biocell software which seemed relatively normal; Fig. 4C). Thus, for
example, although the embryo presented in Fig. 4C developed to
multicellular stage, it had less-flattened pre-compacted appearance of
outer cells and although initiated, could not maintain cavity
formation. It is also noteworthy that similar defects in compaction
were observed in 60% (n=10) of the time-lapse filmed embryos
injected with Cdx2-specific siRNA (Supplementary Movie 4). Inter-
estingly, compaction was often delayed until after entry into the 16-
cell stage and outer cells retained a rounded appearance (Supple-
mentary Movie 6).

In the molecular characterisation of the defects observed after
depletion of both maternal and zygotic pool of Cdx2, we also assessed
its impact on the expression of trophectoderm-related genes. We
found that the immuno-staining observed at the membranes of all

Fig. 2. Cdx2 depletion from immediately after fertilization results in pre-implantation arrest. (A) Average frequency of developmental arrest in Cdx2-RNAi embryos (DsRed mRNA co-
injected as lineage marker; n =18 embryos) before morula (grey bar) and before blastocyst stages (black bar) and three control groups: non-injected embryos (n = 15 embryos), embryos
injected with mRNA for DsRed only (n =20 embryos), embryos injected with dsRNA for gene not involved in lineage specification (n = 37 embryos). Significantly lower numbers of Cdx2-
depleted embryos showed successful development, compared to near-100% successful development in controls (¢t-test, p<0.05 when comparing knockdown group to any control group).
(B) Average cell cycle length (minutes) for third, fourth and fifth cell cycles in control embryos injected at the zygote stage with DsRed mRNA alone (grey bars; n=20) or embryos injected
DsRed mRNA and Cdx2 dsRNA and exhibiting most severe (group 1—green bars; n=9) or milder phenotype (group 2—blue bars; n=29). Errors equal standard deviation from mean. (C)
Sections through fixed and immuno-cytochemically stained embryos at a stage equivalent to the blastocyst stage. Non-manipulated embryos exhibit normal robust Cdx2 staining in the
trophectoderm and no staining in the ICM (Control) whereas Cdx2 protein is absent in equivalent embryos injected with dsRNA for Cdx2 at the zygote stage (Cdx2 RNAI). These embryos
exhibit DsRed fluorescence due to co-injection of DsRed mRNA as a lineage tracer. Nuclei stained with DAPI (blue); scale bar 10 um. (D-F) Cdx2-depleted embryos were followed by time-
lapse microscopy to a stage equivalent to blastocyst under control conditions; time of images in minutes relative to 8-cell stage entry; scale bar 10 pm. Development of individual cells in
each embryo was followed using SIMI Biocell software. Two distinct groups of embryos were distinguished: embryos blocking their development by the 8- to 16-cell stages (D) and
embryos arresting between 16-cell and blastocyst stage (E, F). Note lack of compaction in the first group (D) and defects in cavity formation in the second group (E, F). Merged 3D
representations and DIC images are shown. The centres of the nuclei of individual cells are marked in red. From fourth cleavage onwards, cell death was observed: centres of nuclei of cells
that just died or are about to die are marked white. (G) Representative example of control DsRed mRNA injected embryo that developed to the blastocyst stage. (H) Representative example
a ‘rescued’ embryo that had been co-injected with Cdx2-specific dsRNA and Cdx2 mRNA (plus DsRed mRNA as a lineage marker) that developed to the blastocyst stage in contrast to those
injected with Cdx2-specific dsSRNA alone. In this group 80% (n=21) of embryos exhibited ‘rescued’ development to the blastocyst stage. Schematic representations of lineage trees for all
embryos shown in panels D, E, F, G and H are shown on the right. Dashed lines represent cells that died.



A. Jedrusik et al. / Developmental Biology 344 (2010) 66-78

A Cell death after Cdx2 RNA.I B Cell death types upon Cdx2 depletion

Number of cells Cell cycle

---- dead/dying cells

3
Total Live (%) g
£
1 5 3(60) 2 0 0 © @
g
- ©
2 8 0 (0) 8 0 0 3
o
3 9 0(0) 7 2 0 -
S
4 12 7 (58) 2 3 0 2
©
5 12 9 (75) 0 3 0 3
®
6 14 7 (50) 1 6 0 Zz
[=]
7 15 13 (87) 0 2 0 @
=
8 18 14 (78) 2 2 0 s
L=}
)
9 19 16 (84) 0 3 0 .
Av 12.4 77 24 23 0.0
B w
10 24 18 (75) 1 1 4 =
T ©
11 29 29 (100) 0 0 0 Lx
T2
12 30 18 (60) 0 2 10 SE
13 30 30 (100) 0 0 0
14 32 25 (78) 0 0 7
15 32 27 (84) 0 1 4
16 32 32 (100) 0 0 0
B
17 32 32 (100) 0 0 0 @
Eo
18 35 34 (97) 0 0 1 s k=
° 5
Av 307 27.2 01 04 28 05
C Cell death - TUNEL assay D Cell death - cleaved Caspase 3 assay

5
=
1
o™
*
o
o




74 A. Jedrusik et al. / Developmental Biology 344 (2010) 66-78

trophectoderm cells in control blastocysts with Troma1 antibody was
virtually absent from Cdx2 RNAi embryos cultured to the equivalent
stage (Fig. 4D). Further characterisation of trophectoderm-specific
genes at the mRNA level verified the Cdx2 depletion and showed that
Gata3 levels were reduced by 44% and Eomes mRNA was undetectable
by the 16-cell stage, in contrast to control embryos (Figs. 4B and B’).
The effect on Eomes expression was also confirmed on the protein
level in Cdx2-depleted embryos at stages equivalent to blastocyst
(Supplementary Fig. 4). Thus, the compound reductions in Gata3,
Tromal and Eomes expression indicate that Cdx2 depletion from the
zygote stage affects trophectoderm specification. Interestingly, Cdx2
depletion resulted in an over 3-fold increase in the levels of Tead4
mRNA (Fig. 4B), a transcription factor thought to act upstream of Cdx2
from studies on zygotic gene knockout models (Nishioka et al., 2009;
Nishioka et al., 2008; Yagi et al., 2007), possibly indicating a regulative
mechanism of the embryo in response to Cdx2 depletion.

Additionally, we assayed the expression levels of key pluripo-
tency-related factors. We found that while we could detect little effect
on Oct4 transcripts, after the Cdx2 depletion we could no longer
observe Nanog mRNA expression by the 16-cell stage (Figs. 4B, B’).
The lack of effect on Oct4 mRNA might reflect the high levels of
maternally inherited transcript known to exist whereas the absence of
Nanog transcripts at the 16-cell stage suggest that not only cell
polarity or trophectoderm-related genes are affected upon depletion
of early pool of Cdx2 mRNA. Thus, the early functional roles of Cdx2
are likely to be more wide ranging than previously anticipated from
zygotic gene knockout studies. Taken together, these results indicate
the importance of interplay between cell polarity and Cdx2 expression
and affirm the importance of Cdx2 function from the early stages of
development to ultimately specify outside versus inside cells defined
by the blastocyst stage by a functional trophectoderm.

Depletion of maternal pool of Cdx2 by antisense morpholinos confirms
the role of maternal pool of Cdx2 mRNA

Since antisense morpholino oligonucleotides designed to target
gene-specific 5’UTR or translational start sites have been recently
demonstrated to mediate highly specific gene knockdown in mouse
zygotes (Foygel et al., 2008), we also applied this approach to
knockdown Cdx2 expression in the early zygote. This allowed us to
compare the observed phenotype with those seen after injection of
Cdx2-specific dsRNA and siRNA at the same stage.

We designed two morpholinos, Cdx2-MO1 and Cdx2-MO2, that
specifically targeted non-overlapping sequences at the translational
start site and in the 5’UTR respectively, of mouse Cdx2 transcript
(Fig. 5A). We found that following their microinjection into zygotes,
the rate of developmental arrest was dramatically higher than those
observed for uninjected embryos and those injected with control
morpholino (Control-MO) (Figs. 5B, C). Embryos injected with
Cdx2-MO1 and Cdx2-MO2 showed similar rates of developmental
arrest at 93.3£3.3% and 90.3 £ 1.1% by the multicell/compaction
stages. These rates of developmental arrest were significantly
higher than those of controls (p<0.005; Figs. 5B, C). Consequently,
only 6.7+3.3% and 9.7+ 1.2% of the Cdx2-MO1- and Cdx2-MO2-

injected embryos, respectively, developed into blastocysts, com-
pared to nearly 100% of control embryos (p<0.005; Figs. 5B-D).

Consistent with irregular cell divisions and cell death observed
in Cdx2 RNAi embryos and in contrast to morpholino-mediated
knockdown of Oct4 and Ccna2 (Foygel et al., 2008), Cdx2
knockdown using either of two morpholinos also resulted in
fragmentation of embryos arrested by multicell/compaction stages.
Specifically, the Cdx2 morpholinos resulted in 77.9+1.5% of
embryos fragmenting by the multicell/compaction stages (Fig. 5E).
We also found that some of the Cdx2 knockdown embryos that
compacted subsequently reverted to a pre-compaction appearance
about 24 hours later.

Thus, antisense morpholino oligonucleotides directed against Cdx2
from the zygote stage resulted in a similar phenotype to Cdx2
depletion by RNAi and both strategies resulted in much earlier
phenotypes than those observed after elimination of only zygotic
Cdx2. Taken together, these data also indicate the requirement for
Cdx2 prior to the appearance of morphologically apparent trophecto-
derm cells and indicate that Cdx2 is essential for development
through cell polarisation/compaction up until the blastocyst stages.

Discussion

The expression status of the Cdx2 gene in the earliest stages of
mouse embryo development has been a subject of debate (Roberts et
al.,, 2007). Notwithstanding this, we present both new and existing
data (Wang et al., 2004) that clearly indicates the presence of Cdx2
mRNA in the mouse egg. Furthermore, we find that this maternal pool
is functionally drawn upon during the earliest stages of pre-
implantation development. We reach this conclusion because we
observed an earlier and more severe phenotype after inhibiting Cdx2
expression starting from the zygote stage using three highly specific
gene knockdown approaches - injection of either dsRNA or siRNA or
antisense morpholinos that target the Cdx2 transcript - compared to
the trophectoderm maintenance/late blastocyst phenotype previous-
ly reported for deletion of only the zygotic copies of the Cdx2 gene
(Ralston and Rossant, 2008; Strumpf et al., 2005). Specifically, upon
Cdx2 depletion by either RNAi or morpholinos, the embryos arrest
before the blastocyst stage, showing defects in cell polarisation and
compaction, their developmental progression is much slower with
cell cycle lengths significantly elongated, gene expression associated
with trophectoderm or pluripotency-related factors alters, they show
increased cell death and, finally, more severe defects in the
establishment and maintenance of the blastocyst cavity. These
phenotypic effects resonate with the recent finding that development
of Rhesus monkey zygotes injected with Cdx2-specific antisense
morpholinos is also compromised with the first arrests becoming
evident at the 8-cell stage, coincident with the timing of compaction
and polarisation, and that under half the embryos ever reach the early
blastocyst stage (Sritanaudomchai et al., 2009). That the effects we
observe here are specific to Cdx2 depletion is supported by the fact we
obtain similar early phenotypes using three independent knockdown
approaches, albeit the morpholino approach seems to act slightly
faster, possibly reflecting a more direct mechanism of action when

Fig. 3. Cdx2 depletion from immediately after fertilization leads to increased cell mortality. (A) Tabularised summary of data on the frequency of cell death observed in Cdx2 depleted
embryos (see text for details). (B) Examples of cell death in response to Cdx2 depletion. Cells could die after blocking their development for a long time at certain developmental
stage (top panel first row—cell died after being arrested at the fourth cleavage for nearly 54 hours) or sooner after division (top panel lower two rows—cell died 2.5 hours after
division). In embryos that developed beyond 16-cell stage, cell death was observed in both inside and outside cells (bottom panel—top row shows death of inside cell, and bottom
row—death of two outside cells in the same embryo). DIC and corresponding GFP (visualising nuclei morphology) images are shown. White dashed lines indicates localisation of cell
undergoing cell death on both DIC and GFP images and white arrowheads the remains of dead cells; scale bar 10 um. (C-D) Characterization of cell death associated with Cdx2
depletion from the zygote stage. (C) Control and Cdx2-depleted embryos were cultured to a stage equivalent to the early blastocyst stage (judged by control embryos) and then
subjected to a TUNEL assay. In Cdx2-depleted embryos, stained nuclei indicate apoptotic cell death (*) that is absent from control un-manipulated embryos or negative staining
controls. A positive control embryo that had been incubated in micrococcal nuclease prior to TUNEL assay staining shows staining in all nuclei, confirming apoptotic cell death. (D)
Control and Cdx2-depleted embryos were cultured to a stage equivalent to the blastocyst stage (judged by control embryos), fixed and immuno-stained for cleaved caspase 3 (a
marker of activated apoptotic pathway). Cleaved caspase 3 immuno-reactivity was only observed in the nuclei of Cdx2-depleted embryos (*) and not in control embryos. Note also
the difference in DAPI staining between the two groups with Cdx2-depleted embryos exhibiting nuclear fragmentation. A staining control embryo in which primary anti-cleaved

caspase 3 antibody was omitted is shown for reference; scale bar 10 pm.
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Fig. 4. Cdx2 depletion from the zygote stage affects cell polarisation, outer cell morphology and expression of trophectoderm-marker genes. (A) To observe effect on cell polarisation, Cdx2-depleted zygotes were fixed at the 8-cell stage and
immuno-stained for aPKC or (3-catenin. Comparison of expression level of these factors in Cdx2-depleted (left) and a control embryo (right) are shown. For each factor, images were taken using the same laser settings and phase images are
also shown. Note decreased expression of apically localised aPKC protein and increased 3-catenin in the nucleus, in the Cdx2-depleted embryos. Scale bar 10 um. (B) Quantitative real-time PCR analysis of trophectoderm (Cdx2, Tead4, Gata3
and Eomes), pluripotency-related (Oct4 and Nanog) and polarity-related (Ecad, aPKC, Par1 and Par3) gene mRNA levels at the mid 16-cell stage after Cdx2-specific RNAi from zygote stage (normalised to Actb levels). Expression levels are
shown as fold change, comparing control embryos (injected with DsRed mRNA alone) with Cdx2-depleted embryos (injected with Cdx2-specific dsSRNA and DsRed mRNA). Errors equal SEM of triplicates. Highlighted transcripts (*) denote
those whose expression was reduced to undetectable levels after Cdx2 RNAI. Accordingly, the mRNA expression levels of these genes in control embryos (relative to that of Actb) are shown in the B’ panel to confirm the primers used. (C) Even
in Cdx2-depleted embryos that developed beyond 16-cell stage, outer cells morphology was changed and cavitation affected. Representative time-lapse DIC (upper panels) and GFP images (middle panels) of an embryo undergoing
cavitation are shown; scale bar 10 um. Lineage tree for the same embryo generated using SIMI Biocell software (lower panel). White arrowhead on the GFP images and dashed branch of the lineage tree indicate cell death; time of images in
minutes relative to 8-cell stage entry is shown. Black stars on DIC images highlight outer cells with abnormal (rounded) morphology prior to cavity collapse (last image of the sequence). (D) Expression of trophectoderm-specific cytokeratins

recognised by Tromal antibody is dramatically reduced after Cdx2 depletion. Immuno-fluorescence staining for Tromal antigen in representative control blastocysts (panels ‘a-c’—dashed line outlines ICM) and Cdx2-depleted embryos, ata
blastocyst equivalent stage (panels ‘d-I') are shown. DNA DAPI counter-stain and phase images are shown for reference; scale bar 10 pM.
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Fig. 5. Cdx2 depletion from the zygote stage by antisense morpholino arrests pre-implantation development. (A) Non-overlapping sequences that are targeted by the two
morpholinos used in this study - Cdx2-MO1 and Cdx2-MO2 - at the Cdx2 locus. (B) Cdx2-MO1- and Cdx2-MO2-injected embryos arrested by the 4-cell stage (grey bars) and by the
multicell/compaction stages (black bars), while uninjected embryos and control morpholino (Control-MO)-injected embryos reached blastocyst stage. (C) Only a small percentage
of embryos injected with Cdx2-MOs developed to the blastocyst stage, compared to near-100% blastocyst development in controls. (D) Representative images observed for each
condition at days 3 and 4 of in vitro culture after injection. (E) Embryos injected with Cdx2 morpholinos that were also arrested, showed high fragmentation rates.

compared to dsRNA processing. Furthermore, the characteristic
developmental phenotype associated with Cdx2 depletion can be
‘rescued’ by over-expression of synthetic Cdx2 mRNA. The effects we
observe with the RNAi-based strategy cannot be due to inherent
toxicity of injected dsRNA or siRNA given that our control dsRNA and
siRNA, injected at the same concentration as the Cdx2-specific
constructs, did not adversely effect development. Moreover, when
we used the same construct and injection conditions to deplete Cdx2
at later developmental stage, effectively from the 4- to 8-cell stage in
half the embryo, the effective doubling in concentration of dsRNA
accounted for by injecting the smaller cytoplasmic volume of a 2-cell
blastomere versus a zygote did not adversely effect development per
se (Jedrusik et al, 2008). However, this intervention drove the
allocation of injected cell progeny with reduced Cdx2 levels to occupy
the pluripotent ICM rather than trophectoderm of morphologically
normal blastocysts.

The observed differences in phenotype between the Cdx2
embryos and the Cdx2 knockdown models presented here, can be
explained by a maternal effect of Cdx2 mRNA. Deletion of zygotic Cdx2
alone (Ralston and Rossant, 2008; Strumpf et al., 2005) would not
abrogate the initial functional roles, e.g. cell polarisation, compaction
or trophectoderm specification, because the maternal pool of Cdx2
mRNA provided by the egg cytoplasm would be sufficient to sustain
the embryo through these early stages and to initiate trophectoderm
cell fate. Therefore, zygotic deletion of Cdx2 results in the observed
milder phenotype, as maintenance of trophectoderm function, unlike
trophectoderm specification, likely relies on zygotically derived Cdx2
expression. Indeed our data indicate that from the 16-cell stage, a
large component of the Cdx2 protein is zygotically derived (Fig. 1E). In
contrast, all three knockdown approaches described here would not

—/—

only abrogate zygotic Cdx2 mRNA function but also that of its
maternal counterpart. This simultaneous loss of maternal and zygotic
Cdx2 function would in turn result in the herein observed early
phenotypes associated with the loss of trophectoderm specification
that precede the establishment of inner and outer cells. It is worth
noting that the potential importance of a maternal pool of Cdx2 mRNA
had been eluded to, although not demonstrated, by the previous
studies. Specifically, it was demonstrated that the RNAi-mediated
depletion of Cdx2 from the 4- to 8-cell stage had a greater effect on cell
polarity and allocation (Jedrusik et al., 2008) than the knockout of the
zygotic Cdx2 (Ralston and Rossant, 2008; Strumpf et al., 2005). From
our current perspective, this stronger phenotype could be explained
by a maternal effect of Cdx2 mRNA. Furthermore it suggests that by
the 8-cell stage at least some of this is translated to yield Cdx2 protein,
as the observed phenotype after RNAi taking place at the 4-cell stage
was not as severe as when Cdx2 mRNA is eliminated from the zygote
stage. This is further supported by the existence of clearly detectable
Cdx2 protein in 16-cell embryo nuclei in which global transcription
has been blocked from the 4- to 8-cell stage transition.

During normal development, Cdx2 protein expression is hetero-
geneous at the 8-cell stage with on average nuclei of only 2 cells per
embryo exhibiting robust positive staining (Jedrusik et al., 2008). This
Cdx2 distribution is not just heterogeneous but also asymmetrical in a
manner dependent upon the orientation and order of cleavages of the
2-cell blastomeres that generated them (Jedrusik et al., 2008). Such
cells with the highest Cdx2 levels make a biased contribution to
trophectoderm (Bischoff et al., 2008); are the least pluripotent
(Piotrowska-Nitsche et al., 2005); and have the lowest levels of
specific histone H3 arginine methylation, an epigenetic mark known
to correlate with pluripotency (Torres-Padilla et al., 2007; Wu et al.,
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2009). The asymmetry of Cdx2 protein at the 8-cell stage leads to the
question of whether the maternal Cdx2 mRNA we now detect is in any
way asymmetrically distributed, either initially in the egg or
subsequently in the early cleavage stages. Our mRNA FISH results do
not support a drastic localisation/partitioning of Cdx2 mRNA at the
zygote stage; equally it does not exclude the possibility of subtle
asymmetries in inheritance that could then be subsequently
amplified.

Recent studies have described the function of other essential
trophectoderm transcription factors, Tead4 (Nishioka et al., 2008;
Yagi et al,, 2007) and Gata3 (Home et al., 2009), reported to act
upstream of Cdx2 expression. Tead4~/~ embryos display pre-
implantation lethality and do not initiate cavitation or zygotic Cdx2
expression (Nishioka et al., 2008; Yagi et al., 2007). The developmen-
tal timing of the Tead4 '~ phenotype together with the reported
onset of Tead4 expression after zygotic genome activation suggests
that its loss of function would not affect the earliest/ maternal levels of
either Cdx2 mRNA or protein, indicated by this study. Indeed, there is
evidence for low Cdx2 protein levels in a subset of Tead4™/~
blastomeres by the morula stage (Nishioka et al., 2008). It is plausible
that any Cdx2 protein in Tead4 '~ embryos could be provided from
the maternal pool of Cdx2 mRNA described here. Thus, it cannot yet be
ruled out that Tead4 is upstream of zygotically derived Cdx2 but that
maternally provided Cdx2 exists independently of Tead4. In fact the
elimination of maternal Cdx2 leads to an increase in Tead4 transcript
levels as we show here. This would be consistent with the role of
Tead4 in ensuring Cdx2 is correctly expressed in the outer but not the
inner cells of the embryo once they have been derived (Nishioka et al.,
2009). In the case of Gata3 depletion using RNAi, Cdx2 mRNA
expression was shown to be reduced by around 55% in embryos
that exhibit a marked arrest around the morula/blastocyst transition
(Home et al., 2009). This comparatively later phenotype is somewhat
between that reported here and that when the zygotic Cdx2 is
removed (Ralston and Rossant, 2008; Strumpf et al., 2005) and
suggests Gata3 acts to influence Cdx2 expression at the zygotic level
rather than affecting maternally derived Cdx2. Indeed the fact that we
observe a 44% reduction in Gata3 expression following Cdx2 depletion
from the zygote stage suggests the existence of a mutually reinforcing
feedback loop, operating on the level of zygotic transcription that is
independent of maternally derived Cdx2. However, if maternally
provided Cdx2 is removed, this loop is compromised by a reduced
capacity for Gata3 activation.

It is known that Cdx2 transcript levels increase as the inner and
outer cell populations begin to be established (Wang et al., 2004). Thus,
the earliest effect of Tead4 function on Cdx2 expression appears to
regulate Cdx2 levels in response to cell position from the 8-cell stage
onwards. This relatively late and developmental stage-specific function
of Tead4 in Cdx2 regulation would also explain why Tead4 /'~ 8-cell
blastomeres polarise (Nishioka et al., 2008) despite our finding that
perturbations in Cdx2 expression prior to the 8-cell stage alters the
degree of polarisation and the expression of polarisation-related genes.
In agreement with this, recent evidence suggests existence of a
mutually reinforcing relationship between Cdx2 and cell polarity
which determine cell fate/position (Jedrusik et al., 2008; Plusa et al.,
2005). Thus, the cell polarisation required to initiate the first cell fate
decision may be mediated in part by maternally derived Cdx2 and
subsequently maintained by a Cdx2 executed program directed in the
correct population of outer cells by Tead4.

In light of the results we present here, we would like to reconsider
how Cdx2 mediates the specification of trophectoderm cell fate. Our
results provide evidence that low but functionally significant levels of
maternally derived Cdx2 mRNA are translated in the early cleavage
stage embryos, and if this is prevented by Cdx2 RNAi or antisense
morpholinos, the phenotypic effect is more severe than targeting the
zygotic Cdx2 loci alone, resulting in defective cell polarisation at the 8-
to 16-cell stages. Because Cdx2 protein positively auto-regulates its

own expression (Saegusa et al., 2007), the accumulation of maternally
derived Cdx2 protein could prime zygotic Cdx2 expression. Once a
critical threshold of Cdx2 protein is reached at the 8- to 16-cell
transition, zygotic Cdx2 transcription then robustly ensues, resulting
in the large increases in the levels of Cdx2 transcripts observed around
this time (Wang et al., 2004). This would also promote/maintain
blastomere polarisation and ultimately trophectoderm integrity and
function by the blastocyst stage. Differential levels of Cdx2 protein
expression reported in number of studies among blastomeres at the 8-
cell stage (Jedrusik et al., 2008; Ralston and Rossant, 2008) could be
explained by even a very small bias in the inheritance of the maternal
Cdx2 mRNA between blastomeres given the positive feedback loop
mechanism. Equally, differences among blastomeres may be also due
to differential transcriptional activation. Even small differences would
have the opportunity to be greatly amplified during the long cell
cycles of the first three cleavage divisions. Notwithstanding this, any
larger bias in maternal Cdx2 mRNA inheritance, akin to that suggested
by the fact that approximately 40% of embryos have substantially
higher levels of Cdx2 transcript in the cells derived from vegetal
blastomeres (Jedrusik et al., 2008), would result in still greater
asymmetries by the 8-cell stage.

The differential Cdx2 phenotypes between the zygotic knockout
model and the simultaneous knockdown of maternal and zygotic
transcripts are reminiscent of the recently reported earlier role for
Oct4 that was unmasked by morpholino-mediated knockdown of Oct4
(Foygel et al., 2008). In the mouse knockout model, Oct4 was known
for its requirement in ICM expansion and pluripotency (Nichols et al.,
1998), as Cdx2 was known for trophectoderm maintenance; both
genes were known for their critical role in development after
formation of the early blastocyst. However, neither gene was
suspected to be required for blastocyst formation. In the case of
Oct4, it was surprising that blocking gene function from the zygote
stage did not result in the anticipated induction of Cdx2 or reduction
in Sox2 expression that would be predicted from the zygotic gene
knockout models (Foygel et al., 2008). Similarly, we find that
inhibiting Cdx2 expression in this study fails to induce Nanog
expression and that its levels are undetectable by the 16-cell stage.
Hence, it appears that the earlier roles of Cdx2 could be quite distinct
from those characterized at later stages, as has been described for
Oct4. Indeed our finding that Cdx2 has an early role raises the question
that other genes that have maternal and zygotic contribution may also
function earlier in development than previously anticipated. Using
gene knockdown strategies, the study of maternal effect would not
only be restricted to oocyte-specific genes, such as Zar1 and Nobox1,
that are not transcribed after zygotic genome activation (Tong et al.,
2000; Wu et al.,, 2003). It is possible that a broad application of this
alternative paradigm would provide access to understand the
essential and early steps for lineage specification in the early embryo.
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