82 research outputs found

    Investigation of Genetic Structure between Deep and Shallow Populations of the Southern Rock Lobster, Jasus edwardsii in Tasmania, Australia

    Get PDF
    The southern rock lobster, Jasus edwardsii, shows clear phenotypic differences between shallow water (red coloured) and deeper water (pale coloured) individuals. Translocations of individuals from deeper water to shallower waters are currently being trialled as a management strategy to facilitate a phenotypic change from lower value pale colouration, common in deeper waters, to the higher value red colouration found in shallow waters. Although panmixia across the J. edwardsii range has been long assumed, it is critical to assess the genetic variability of the species to ensure that the level of population connectivity is appropriately understood and translocations do not have unintended consequences. Eight microsatellite loci were used to investigate genetic differentiation between six sites (three shallow, three deep) across southern Tasmania, Australia, and one from New Zealand. Based on analyses the assumption of panmixia was rejected, revealing small levels of genetic differentiation across southern Tasmania, significant levels of differentiation between Tasmania and New Zealand, and high levels of asymmetric gene flow in an easterly direction from Tasmania into New Zealand. These results suggest that translocation among Tasmanian populations are not likely to be problematic, however, a re-consideration of panmictic stock structure for this species is necessary

    Efficiency of ddRAD target enriched sequencing across spiny rock lobster species (Palinuridae: Jasus)

    Get PDF
    Double digest restriction site-associated DNA sequencing (ddRADseq) and target capture sequencing methods are used to explore population and phylogenetic questions in non-model organisms. ddRADseq offers a simple and reliable protocol for population genomic studies, however it can result in a large amount of missing data due to allelic dropout. Target capture sequencing offers an opportunity to increase sequencing coverage with little missing data and consistent orthologous loci across samples, although this approach has generally been applied to conserved markers for deeper evolutionary questions. Here, we combine both methods to generate high quality sequencing data for population genomic studies of all marine lobster species from the genus Jasus. We designed probes based on ddRADseq libraries of two lobster species (Jasus edwardsii and Sagmariasus verreauxi) and evaluated the captured sequencing data in five other Jasus species. We validated 4,465 polymorphic loci amongst these species using a cost effective sequencing protocol, of which 1,730 were recovered from all species, and 4,026 were present in at least three species. The method was also successfully applied to DNA samples obtained from museum specimens. This data will be further used to assess spatial-temporal genetic variation in Jasus species found in the Southern Hemisphere

    Nautilus at Risk – Estimating Population Size and Demography of Nautilus pompilius

    Get PDF
    The low fecundity, late maturity, long gestation and long life span of Nautilus suggest that this species is vulnerable to over-exploitation. Demand from the ornamental shell trade has contributed to their rapid decline in localized populations. More data from wild populations are needed to design management plans which ensure Nautilus persistence. We used a variety of techniques including capture-mark-recapture, baited remote underwater video systems, ultrasonic telemetry and remotely operated vehicles to estimate population size, growth rates, distribution and demographic characteristics of an unexploited Nautilus pompilius population at Osprey Reef (Coral Sea, Australia). We estimated a small and dispersed population of between 844 and 4467 individuals (14.6–77.4 km−2) dominated by males (83∶17 male∶female) and comprised of few juveniles (<10%).These results provide the first Nautilid population and density estimates which are essential elements for long-term management of populations via sustainable catch models. Results from baited remote underwater video systems provide confidence for their more widespread use to assess efficiently the size and density of exploited and unexploited Nautilus populations worldwide

    Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging

    Get PDF
    Cardiovascular magnetic resonance (CMR) imaging provides highly accurate measurements of biventricular volumes and mass and is frequently used in the follow-up of patients with acquired and congenital heart disease (CHD). Data on reproducibility are limited in patients with CHD, while measurements should be reproducible, since CMR imaging has a main contribution to decision making and timing of (re)interventions. The aim of this study was to assess intra-observer and interobserver variability of biventricular function, volumes and mass in a heterogeneous group of patients with CHD using CMR imaging. Thirty-five patients with CHD (7–62 years) were included in this study. A short axis set was acquired using a steady-state free precession pulse sequence. Intra-observer and interobserver variability was assessed for left ventricular (LV) and right ventricular (RV) volumes, function and mass by calculating the coefficient of variability. Intra-observer variability was between 2.9 and 6.8% and interobserver variability was between 3.9 and 10.2%. Overall, variations were smallest for biventricular end-diastolic volume and highest for biventricular end-systolic volume. Intra-observer and interobserver variability of biventricular parameters assessed by CMR imaging is good for a heterogeneous group of patients with CHD. CMR imaging is an accurate and reproducible method and should allow adequate assessment of changes in ventricular size and global ventricular function

    The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis (Cephalopoda)

    Get PDF
    Vampyroteuthis infernalis Chun, 1903, is a widely distributed deepwater cephalopod with unique morphology and phylogenetic position. We assessed its habitat and trophic ecology on a global scale via stable isotope analyses of a unique collection of beaks from 104 specimens from the Atlantic, Pacific and Indian Oceans. Cephalopods typically are active predators occupying a high trophic level (TL) and exhibit an ontogenetic increase in δ15N and TL. Our results, presenting the first global comparison for a deep-sea invertebrate, demonstrate that V. infernalis has an ontogenetic decrease in δ15N and TL, coupled with niche broadening. Juveniles are mobile zooplanktivores, while larger Vampyroteuthis are slow-swimming opportunistic consumers and ingest particulate organic matter. Vampyroteuthis infernalis occupies the same TL (3.0–4.3) over its global range and has a unique niche in deep-sea ecosystems. These traits have enabled the success and abundance of this relict species inhabiting the largest ecological realm on the planet.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published pdf

    Zoofolkloristika: Prvi uvidi na putu prema novoj disciplini

    Get PDF
    The author notes that new, more complex researches of connections between animals, nature and connections to humans are needed in Slovenian and European folklore, literature and cultural studies, due to new ecological and ethical findings in the wider social and cultural environment and a changing order of the world, which has moved the focus from anthropocentrism into ecocentrism. The discussion builds upon various theoretical discourses, new concepts and multidisciplinary knowledge, to create the foundations, guidelines and directions for a new academic discipline of zoofolkloristics. Furthermore, new theoretical and analytical discourses should enable zoofolkloristics to provide an insight into changes in human attitudes to animals, in both folklore and within traditional and contemporary ritual practices, or their redefinition, and at the same time exert influence upon legal safety of non-human subjectivities.Autorica polazi od tvrdnje da su potrebna nova, kompleksnija istraživanja veza između životinja, prirode i poveznica s ljudima u slovenskoj i europskoj folkloristici, znanosti o književnosti i kulturnim studijima, zbog novih ekoloških i etičkih uvida u širu društveno-kulturnu okolinu i promjene u svijetu, koje su dovele do promjene od antropocentrizma k ekocentrizmu. U radu se na temelju različitih teorijskih diskursa, novih pojmova i multidisciplinarnog znanja stvaraju temelji, smjernice i pravci istraživanja u novoj znanstvenoj disciplini zoofolkloristike. Autorica tvrdi da bi etnologija, folkloristika i znanost o književnosti mogle imati ključnu ulogu u razvoju ekološke svijesti, znanstvenih terenskih istraživanja i kulturne ekologije te tako omogućiti prelazak iz ekologije u eshatologiju. Rad započinje opisom percepcije životinja i odnosa ljudi i životinja, gdje autorica govori o temeljnim pojmovima koji utječu na uvođenje ove nove znanstvene discipline, kao što su: životinja kao ispitanik, individualni pristup životinji, sinantropski i antropofilni pogled na čovjeka i životinju te antropomorfizam. Zatim se govori o povijesnim i suvremenim filozofsko-antropološkim diskursima o ljudskom pogledu na životinju te o teoriji specizma. Autorica razmatra predmet nove discipline te kaže da je u centru istraživanja životinja u folkloru u najširem mogućem smislu, u svim sferama narodne kulture, što se proučava iz novih gledišta, nove percepcije i recepcije; u pjesmama, pričama, bajkama, basnama, predajama, poslovicama, izrekama, zagonetkama, šalama, narodnom jeziku, kulturnim praksama, narodnom teatru, mitologiji, narodnoj medicini pa čak i u narodnoj glazbi. Nadalje, autorica daje pregled kulturnih istraživanja životinja u Europi i Sloveniji, te pokazuje da su rasprave o životinjama uglavnom objavljivane u 21. stoljeću, što bi moglo označavati da je riječ o prelasku u novu paradigmu ili čak i novu ontologiju. Autorica se bavi metodološkim i teorijskim pitanjima i pravcima u zoofolklorističkim istraživanjima koje klasificira prema kritičkom diskursu. Rad završava pregledom ciljeva zoofolkloristike, za koju tvrdi da ne bi smjela postati znanstvena disciplina koja nema aktivan utjecaj na društvenopolitički prostor u kojem koegzistiraju ljudski i ne-ljudski subjektiviteti

    The Major Surface-Associated Saccharides of Klebsiella pneumoniae Contribute to Host Cell Association

    Get PDF
    Analysing the pathogenic mechanisms of a bacterium requires an understanding of the composition of the bacterial cell surface. The bacterial surface provides the first barrier against innate immune mechanisms as well as mediating attachment to cells/surfaces to resist clearance. We utilised a series of Klebsiella pneumoniae mutants in which the two major polysaccharide layers, capsule and lipopolysaccharide (LPS), were absent or truncated, to investigate the ability of these layers to protect against innate immune mechanisms and to associate with eukaryotic cells. The capsule alone was found to be essential for resistance to complement mediated killing while both capsule and LPS were involved in cell-association, albeit through different mechanisms. The capsule impeded cell-association while the LPS saccharides increased cell-association in a non-specific manner. The electrohydrodynamic characteristics of the strains suggested the differing interaction of each bacterial strain with eukaryotic cells could be partly explained by the charge density displayed by the outermost polysaccharide layer. This highlights the importance of considering not only specific adhesin:ligand interactions commonly studied in adherence assays but also the initial non-specific interactions governed largely by the electrostatic interaction forces
    corecore