130 research outputs found

    Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Syphilis spirochete <it>Treponema pallidum </it>ssp. <it>pallidum </it>remains the enigmatic pathogen, since no virulence factors have been identified and the pathogenesis of the disease is poorly understood. Increasing rates of new syphilis cases per year have been observed recently.</p> <p>Results</p> <p>The genome of the SS14 strain was sequenced to high accuracy by an oligonucleotide array strategy requiring hybridization to only three arrays (Comparative Genome Sequencing, CGS). Gaps in the resulting sequence were filled with targeted dideoxy-terminators (DDT) sequencing and the sequence was confirmed by whole genome fingerprinting (WGF). When compared to the Nichols strain, 327 single nucleotide substitutions (224 transitions, 103 transversions), 14 deletions, and 18 insertions were found. On the proteome level, the highest frequency of amino acid-altering substitution polymorphisms was in novel genes, while the lowest was in housekeeping genes, as expected by their evolutionary conservation. Evidence was also found for hypervariable regions and multiple regions showing intrastrain heterogeneity in the <it>T. pallidum </it>chromosome.</p> <p>Conclusion</p> <p>The observed genetic changes do not have influence on the ability of <it>Treponema pallidum </it>to cause syphilitic infection, since both SS14 and Nichols are virulent in rabbit. However, this is the first assessment of the degree of variation between the two syphilis pathogens and paves the way for phylogenetic studies of this fascinating organism.</p

    Complete Genome Sequence of Treponema paraluiscuniculi, Strain Cuniculi A: The Loss of Infectivity to Humans Is Associated with Genome Decay

    Get PDF
    Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp), arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51). In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84) affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9%) of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits) during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies

    Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster

    Get PDF
    The abrupt onslaught of the syphilis pandemic that started in the late fifteenth century established this devastating infectious disease as one of the most feared in human history. Surprisingly, despite the availability of effective antibiotic treatment since the mid-twentieth century, this bacterial infection, which is caused by Treponema pallidum subsp. pallidum (TPA), has been re-emerging globally in the last few decades with an estimated 10.6 million cases in 2008. Although resistance to penicillin has not yet been identified, an increasing number of strains fail to respond to the secondline antibiotic azithromycin. Little is known about the genetic patterns in current infections or the evolutionary origins of the disease due to the low quantities of treponemal DNA in clinical samples and difficulties in cultivating the pathogen. Here, we used DNA capture and whole-genome sequencing to successfully interrogate genome-wide variation from syphilis patient specimens, combined with laboratory samples of TPA and two other subspecies. Phylogenetic comparisons based on the sequenced genomes indicate that the TPA strains examined share a common ancestor after the fifteenth century, within the early modern era. Moreover, most contemporary strains are azithromycin-resistant and are members of a globally dominant cluster, named here as SS14-Ω. The cluster diversified from a common ancestor in the mid-twentieth century subsequent to the discovery of antibiotics. Its recent phylogenetic divergence and global presence point to the emergence of a pandemic strain cluster

    Advancing the understanding of treponemal disease in the past and present

    Get PDF
    Syphilis was perceived to be a new disease in Europe in the late 15th century, igniting a debate about its origin that continues today in anthropological, historical, and medical circles. We move beyond this age-old debate using an interdisciplinary approach that tackles broader questions to advance the understanding of treponemal infection (syphilis, yaws, bejel, and pinta). How did the causative organism(s) and humans co-evolve? How did the related diseases caused by Treponema pallidum emerge in different parts of the world and affect people across both time and space? How are T. pallidum subspecies related to the treponeme causing pinta? The current state of scholarship in specific areas is reviewed with recommendations made to stimulate future work. Understanding treponemal biology, genetic relationships, epidemiology, and clinical manifestations is crucial for vaccine development today and for investigating the distribution of infection in both modern and past populations. Paleopathologists must improve diagnostic criteria and use a standard approach for recording skeletal lesions on archaeological human remains. Adequate contextualization of cultural and environmental conditions is necessary, including site dating and justification for any corrections made for marine or freshwater reservoir effects. Biogeochemical analyses may assess aquatic contributions to diet, physiological changes arising from treponemal disease and its treatments (e.g., mercury), or residential mobility of those affected. Shifting the focus from point of origin to investigating who is affected (e.g., by age/sex or socioeconomic status) and disease distribution (e.g., coastal/ inland, rural/urban) will advance our understanding of the treponemal disease and its impact on people through time

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Polygenic and multifactorial scores for pancreatic ductal adenocarcinoma risk prediction

    Get PDF
    Most cases of pancreatic ductal adenocarcinoma (PDAC) are asymptomatic in early stages, and the disease is typically diagnosed in advanced phases, resulting in very high mortality. Tools to identify individuals at high risk of developing PDAC would be useful to improve chances of early detection

    Characterizing the Syphilis-Causing Treponema pallidum ssp. pallidum Proteome Using Complementary Mass Spectrometry

    Get PDF
    YesBackground. The spirochete bacterium Treponema pallidum ssp. pallidum is the etiological agent of syphilis, a chronic multistage disease. Little is known about the global T. pallidum proteome, therefore mass spectrometry studies are needed to bring insights into pathogenicity and protein expression profiles during infection. Methodology/Principal Findings. To better understand the T. pallidum proteome profile during infection, we studied T. pallidum ssp. pallidum DAL-1 strain bacteria isolated from rabbits using complementary mass spectrometry techniques, including multidimensional peptide separation and protein identification via matrix-assisted laser desorption ionization-time of flight (MALDI-TOF/TOF) and electrospray ionization (ESI-LTQ-Orbitrap) tandem mass spectrometry. A total of 6033 peptides were detected, corresponding to 557 unique T. pallidum proteins at a high level of confidence, representing 54% of the predicted proteome. A previous gel-based T. pallidum MS proteome study detected 58 of these proteins. One hundred fourteen of the detected proteins were previously annotated as hypothetical or uncharacterized proteins; this is the first account of 106 of these proteins at the protein level. Detected proteins were characterized according to their predicted biological function and localization; half were allocated into a wide range of functional categories. Proteins annotated as potential membrane proteins and proteins with unclear functional annotations were subjected to an additional bioinformatics pipeline analysis to facilitate further characterization. A total of 116 potential membrane proteins were identified, of which 16 have evidence supporting outer membrane localization. We found 8/12 proteins related to the paralogous tpr gene family: TprB, TprC/D, TprE, TprG, TprH, TprI and TprJ. Protein abundance was semi-quantified using label-free spectral counting methods. A low correlation (r = 0.26) was found between previous microarray signal data and protein abundance. Conclusions. This is the most comprehensive description of the global T. pallidum proteome to date. These data provide valuable insights into in vivo T. pallidum protein expression, paving the way for improved understanding of the pathogenicity of this enigmatic organism.This work was supported by the grants from the Flanders Research Foundation, SOFI-B Grant to CRK, http://www.fwo.be/, a Public Health Service Grant from the National Institutes of Health to CEC, (grant # AI-051334), https://www.nih.gov/ and a grant from the Grant Agency of the Czech Republic to DS and MS (P302/12/0574, GP14-29596P), https:// gacr.cz/

    Omics-based molecular techniques in oral pathology centred cancer: Prospect and challenges in Africa

    Get PDF
    : The completion of the human genome project and the accomplished milestones in the human proteome project; as well as the progress made so far in computational bioinformatics and “big data” processing have contributed immensely to individualized/personalized medicine in the developed world.At the dawn of precision medicine, various omics-based therapies and bioengineering can now be applied accurately for the diagnosis, prognosis, treatment, and risk stratifcation of cancer in a manner that was hitherto not thought possible. The widespread introduction of genomics and other omics-based approaches into the postgraduate training curriculum of diverse medical and dental specialties, including pathology has improved the profciency of practitioners in the use of novel molecular signatures in patient management. In addition, intricate details about disease disparity among diferent human populations are beginning to emerge. This would facilitate the use of tailor-made novel theranostic methods based on emerging molecular evidences
    corecore