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Introductory paragraph: The abrupt onslaught of the syphilis pandemic starting in the late 44 

15th century established this devastating infectious disease as one of the most feared in 45 

human history 1. Surprisingly, despite the availability of effective antibiotic treatment since 46 

the mid-20th century, this bacterial infection caused by Treponema pallidum subsp. pallidum 47 

(TPA), has been re-emerging globally in the last few decades with an estimated 10.6 million 48 

cases in 2008 2. While resistance to penicillin has not yet been identified, an increasing 49 

number of strains fail to respond to the second-line antibiotic azithromycin 3. Little is known 50 

about the genetic patterns in current infections or the evolutionary origins of the disease 51 

due to the low quantities of treponemal DNA in clinical samples, and difficulties to cultivate 52 

the pathogen 4. Here we used DNA capture and whole genome sequencing to successfully 53 

interrogate genome-wide variation from syphilis patient specimens, combining it with 54 

laboratory samples of TPA and two other subspecies. Phylogenetic comparisons based on 55 

the sequenced genomes indicate that the TPA strains examined share a common ancestor 56 

after the 15th century, within the early modern era. Moreover, most contemporary strains 57 

are azithromycin resistant and members of a globally dominant cluster named here as SS14-58 

Ω. This cluster diversified from a common ancestor in the mid-20th century subsequent to 59 

the discovery of antibiotics. Its recent phylogenetic expansion and global presence point to 60 

the emergence of a pandemic strain cluster.  61 

Main Text: The first reported syphilis outbreaks in Europe occurred during the War of Naples 62 

in 1495 5, prompting unresolved theories on a post-Columbian introduction 6,7. 63 

Subsequently, the epidemic spread to other continents, remaining a severe health burden 64 

until treatment with penicillin five centuries later enabled incidence reduction. The striking 65 

present-day resurgence is poorly understood, particularly the underlying patterns of genetic 66 

diversity. Much of our molecular understanding of treponemes comes from propagating 67 

strains in laboratory animals to obtain sufficient DNA. The few published whole genomes 68 

were obtained after amplification through rabbit passage 4,8–10, and represent limited 69 

diversity for phylogenetic analyses. These sequences suggest that the TPA genome of 1.14 70 

Mb is genetically monomorphic. Potential genetic diversity remains unexplored because 71 

clinical samples are mostly typed by PCR amplification of only 1-5 loci 11,12. These 72 

epidemiological strain typing studies are motivated by the limitations of serologic or 73 

microscopic tests to distinguish among TPA strains or among the subspecies Treponema 74 

pallidum subsp. pertenue (TPE) and Treponema pallidum subsp. endemicum (TEN), which 75 

cause the diseases yaws and bejel, respectively. While all three diseases are transmitted 76 

through skin contact and show an overlap in their clinical manifestations, syphilis is 77 

geographically more widespread and generally transmitted sexually. The precise 78 

relationships among the bacteria are still debated, particularly regarding the evolutionary 79 

origin of syphilis.  80 

The paucity of molecular studies and the focus on typing of a few genes means that we have 81 

limited information regarding the evolution and spread of epidemic TPA. In this study, we 82 

interrogated genome-wide variation across geographically widespread isolates. In total, we 83 

obtained 70 samples from 13 countries, including 52 syphilis swabs collected directly from 84 

patients between 2012 and 2013, and 18 syphilis, yaws, and bejel samples collected from 85 

1912 onwards and propagated in laboratory rabbits (Supplementary Table 1). Through 86 

comparative genome analyses and phylogenetic reconstruction, we shed light on the 87 

evolutionary history of TPA and identify epidemiologically relevant haplotypes. 88 

Due to the large background of host DNA, samples were enriched for treponemal DNA prior 89 

to Illumina sequencing 13,14. The resultant reads were mapped to the Nichols TPA reference 90 
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genome (RefSeq NC_021490; Supplementary Table 3) 4,15. Genomic coverage ranged from 91 

0.13-fold to over 1000-fold. As expected, the highest mean coverage was found in strains 92 

propagated in rabbits, while high variation in mean coverage was observed in samples 93 

collected directly from patients (0.13-fold to 223-fold) (Supplementary Table 2). This 94 

heterogeneity could potentially affect our inferences. Therefore, we restricted the genome-95 

wide analyses to the 28 samples where at least 80% of the genome was covered by a 96 

minimum of three reads (highlighted in Supplementary Table 2). Across the 28 samples, the 97 

average proportion of genome coverage with at least 3-fold or 10-fold depth was 97% and 98 

82%, respectively (Supplementary Table 4).  99 

De novo assemblies for the four highest covered syphilis swab samples (NE17, NE20, CZ27, 100 

AU15) and one Indonesian yaws isolate (IND1) show no significant structural changes in the 101 

five genomes (Fig. 1a; Supplementary Table 5), except for the deletion in IND1 of gene 102 

TP1030, which potentially encodes a virulence-factor 17. The deletion was shared across all 103 

the yaws infection isolates (Supplementary Methods), consistent with other studies 18.  104 

Prior to phylogenetic reconstruction we checked for signatures of recombination. While T. 105 

pallidum is considered to be a clonal species 19, previous studies suggest recombinant genes 106 

in a Mexican syphilis and a Bosnian bejel strain 10,16. We screened for putative recombinants 107 

across the 978 annotated genes in our 28 sequenced genomes and the 11 publicly available 108 

genomes from laboratory strains (Supplementary Table 3). Genes were selected as 109 

candidates if they had unexpectedly high SNP densities, incongruent topologies with the 110 

genome-wide tree and more than 4 homoplasies in a pair of branches (Supplementary 111 

Methods). We identified 4 genes coding for outer membrane proteins (Supplementary Table 112 

6), one of which (TP0136) is used in typing studies 8.  113 

After excluding the 4 putative recombinant genes, the genome alignment for all 39 genomes 114 

contained 2,235 variable positions. We used the Bayesian framework implemented in BEAST 115 
20 to reconstruct a phylogenetic tree (Fig. 1b). The tree topology revealed a marked 116 

separation between TPA and TPE/TEN (100% Bayesian posterior support), with TPA forming 117 

a monophyletic lineage. The distinction of the two lineages was robust even with the 118 

inclusion of putative recombinant genes (Supplementary Fig. 2). Analyses of divergence 119 

between the two lineages yielded an average mean distance of 1225 nucleotide differences. 120 

By contrast, within each of the lineages we found considerably less diversity (124.6 average 121 

pairwise mutations within the TPA lineage and 200.2 within TPE/TEN). A heat map 122 

(Supplementary Fig. 3) to show shared variation for pairs of samples with respect to the 123 

Nichols reference genome, confirms the divergence between the lineages. The underlying 124 

SNP matrix yielded 443 SNPs specific to TPA genomes and 1703 to TPE/TEN genomes. 125 

Previous studies have found cross-subspecies groupings when relying on a limited set of 126 

markers 21. Our results, incorporating genome-wide data from clinical samples, not only 127 

establish a clear separation between the two lineages, in agreement with studies examining 128 

genomic data from rabbit propagated samples 10,18, but also illustrate the need for a careful 129 

choice of taxonomic markers when genome-wide data is not available.  130 

Using the sample isolation dates as tip calibration and applying the Birth Death Serial Skyline 131 

model 23, we obtained a mean evolutionary rate of 3.6 x 10-4  (rate variance 3.8 x 10-8 ; 95% 132 

HPD 1.86 x 10-4 - 5.73 x 10-4). This estimate is equivalent to scaled mean rate of 6.6 x 10-7 
133 

substitutions per site per year for the whole genome, in line with estimates for other clonal 134 

human pathogens such as Shigella sonnei (6.0x10-7) and Vibrio cholerae (O1 lineage; 8.0x10-
135 

7) 24,25. Our divergence analyses for TPA samples provide a time to the most recent common 136 
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ancestor (TMRCA) less than 500 years ago (mean calendar year 1744, 95% HPD 1611-1859; 137 

Fig. 1B).  138 

Within the TPA lineage the samples group in two clades named after the SS14 and Nichols 139 

reference genomes (with 100% and 82% posterior support values respectively). The Nichols 140 

clade consists almost exclusively of samples collected from patients in North America from 141 

1912 to 1986 and passaged in rabbits prior to sequencing, with the exception of one patient 142 

sample from 2013 (NE20). In contrast, the SS14 clade has a geographically widespread 143 

distribution, encompassing European, North American and South American samples 144 

collected from infections between 1951 and 2013. We investigated the TPA clades further by 145 

generating a median-joining (MJ) network to illustrate the mutational differences among the 146 

TPA samples (Fig. 2a). As underscored by distances in the network, greater nucleotide 147 

diversity is found within the Nichols clade (π=0.05) compared to the SS14 clade (π= 0.01). 148 

Three closely related sequences derive from the original Nichols sample isolated from the 149 

cerebrospinal fluid of a patient in 1912 and propagated in the lab: NIC_REF, the reference 150 

genome re-sequenced by Pětrošová et al. 15, and NIC-1 and NIC-2, which we sequenced 151 

following independent propagation of the strains in Houston and Seattle, respectively, 152 

during different time periods (Supplementary Table 1 and Supplementary Table 3). These 153 

three group together with another three sequences in a cluster labelled Nichols- α (Fig. 2a), 154 

with a TMRCA at the turn of the 19th century (Fig. 1a). The less diversified SS14 clade 155 

contains a dominant central haplotype (labelled as SS14-Ω) from which the other sequences 156 

radiate (Fig. 2A). Critically, the cluster associated with the SS14-Ω haplotype contains all but 157 

one of the recent patient samples from 2012-2013 (n=17) that were captured and 158 

sequenced directly, in addition to samples from 1977 (n=1) and 2004 (n=2). The genetic 159 

variation within the SS14-Ω cluster is found primarily as singleton mutations (95.5%), with no 160 

evidence for geographical structuring. Bayesian analyses estimate a median coalescence for 161 

the SS14-Ω cluster in 1963 (95% HPD 1948-1974; Fig. 1a), at a time when incidence was 162 

reduced due to the introduction of antibiotics. The star-like topology of this cluster observed 163 

in both the tree and the network is suggestive of a recent and rapid clonal expansion.  164 

To determine whether the dominance of SS14 clade sequences applies across other 165 

countries for which genetic data is available, we examined sequences from the widely typed 166 

TP0548 gene in worldwide epidemiological studies 11. Phylogenies for the TP0548 typing 167 

regions separate the SS14 from the Nichols clade for the TPA samples, while not 168 

distinguishing the TPA and TPE/TEN lineages (Supplementary Methods; Supplementary Fig. 169 

3). Across 1353 worldwide TP0548 sequences from clinical samples, including the 78 from 170 

patients in this study, we found that 94% of them grouped in the SS14 clade (Supplementary 171 

Tables 8-9; Supplementary Fig. 5), consistent with a probable recent spread of the epidemic 172 

cluster. The wide geographical distribution of the SS14 clade establishes it as representative 173 

of the present worldwide epidemic. While studies to date have focused on the Nichols strain 174 
26,27, our results indicate that further work on the SS14 clade is warranted. 175 

Critically, typing of samples over multiple years in the Czech Republic, San Francisco, British 176 

Columbia and Seattle indicate that macrolide antibiotic resistance has increased over time 177 
3,12,28–30. We queried the presence of the two mutations (A2058G and A2059G) in the 23S 178 

rRNA genes associated with azithromycin resistance 3,31,32. As observed in the MJ network, 179 

the resistance marker is a dominant characteristic of the SS14-Ω cluster (Fig. 2a), although it 180 

is also found in a recent patient sample (NE20) of the Nichols clade. Extending our analyses 181 

of the 23S rRNA gene to all sequenced samples from our study, including the 42 with lower 182 

coverage, revealed the mutations in 90% of the SS14 (n=51) and 25% of the Nichols (n=12) 183 
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samples, indicating that neither resistance nor sensitivity is clade-specific (Supplementary 184 

Table 8). Hence resistance was probably not an ancestral characteristic of the SS14 clade. A 185 

likely scenario is that the extensive usage of azithromycin to treat syphilis and a wide range 186 

of bacterial infections, including co-infections with other sexually-transmitted diseases 187 

(STDs) such as chlamydia, has played an important role in the selection and subsequent 188 

spread of resistance 33,34.  189 

Results here represent the first reported set of whole genome sequences successfully 190 

obtained directly from syphilis patients, enabling us to disentangle evolutionary relationships 191 

at high resolution, and paving the way for further clinical sequencing from current 192 

epidemics. Given our identification of putative recombinant genes in Treponema, and 193 

previous reports on genes involved in homologous recombination 4,35, further detailed 194 

analyses on the potential mechanisms of recombination will be necessary. Our phylogenetic 195 

reconstruction indicates that all TPA samples examined to date share a common ancestor 196 

that was infecting populations in the 1700s, within the early centuries of the modern era, 197 

and that was successful in leaving descendants until today. This date is posterior to the 198 

colonization of the Americas, and therefore potentially compatible with the post-Columbian 199 

model for the emergence of syphilis in Europe. Nonetheless, our work does not exclude the 200 

possibility that older TPA lineages had previously existed in Europe but went extinct. 201 

Obtaining more patient sample genomes with high coverage could potentially refine our 202 

detection of putative recombinants and our phylogenetic inferences. In addition, sequencing 203 

from ancient skeletal material would help to further ascertain the history of syphilis. 204 

Interestingly, we observed a time difference between the first reported syphilis outbreak in 205 

1495 and the last common ancestor of modern strains dated to the 1700s. While this 206 

difference could stem from imprecision in the divergence estimates, an alternative scenario 207 

is the eventual establishment of a specific lineage due to selection. For instance, it has been 208 

hypothesized that the symptoms of syphilis became less severe after the first reported 209 

outbreaks in Europe because of the evolution of strains with lower virulence and higher 210 

transmission rates 36. In this scenario, the 18th century provided the context for the origin 211 

and propagation of a lineage that successfully outcompeted other lineages.  212 

Critical to our epidemiological understanding of contemporary syphilis is our observation of 213 

an epidemic cluster (SS14-Ω) that emerged after the discovery of antibiotics. The relatively 214 

recent phylogenetic expansion of the SS14-Ω cluster and its global presence point to the 215 

emergence of a pandemic azithromycin-resistant cluster. The genome-wide data in this 216 

study will be useful to determine a suitable set of typing loci, since typing remains a more 217 

accessible method for most laboratories. Further characterization of the genomic diversity of 218 

TPA across the globe can prove instrumental in understanding the genetic and 219 

epidemiological basis for the spread of SS14-Ω strains.  220 
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Methods 221 

 
Sample collection, DNA extraction and library preparation 222 

Samples from 64 syphilis infections, 5 yaws infections and 1 bejel infection were 223 

collected from numerous countries across the globe (Supplementary Table 1). Syphilis 224 

infection samples were classified as either clinical, if obtained from patients directly, or as 225 

laboratory strains, if passaged in rabbits after isolation from patients. Clinical samples were 226 

obtained after swabbing lesions from patients at sexual health clinics, dermatological clinics 227 

or hospitals. Flocked swabs (from Copan Diagnostics, Brescia, Italy) or Nylon swabs were 228 

used according to local laboratory instructions. Laboratory strains were obtained as DNA 229 

extracts from Masaryk University (Brno, Czech Republic) and the University of Washington 230 

(Seattle, USA).DNA extractions were carried out in the participating laboratories using in-231 

house protocols. At the University of Zurich the QIAmp DNA mini kit and QIAmp DNA blood 232 

min kit (Qiagen) were used following the manufacturer’s protocols.  233 

Library preparation was conducted following a modified Illumina protocol for ancient 234 

DNA 14,37, at the University of Tübingen (Supplementary Materials and Methods). Libraries 235 

were barcoded with double indices.  236 

 
Genome-wide enrichment and sequencing 237 

Target enrichment for Treponema pallidum subsp. pallidum was carried out through two 238 

rounds of capture hybridization on a 1 million Agilent SureSelect array following the protocol 239 

detailed by Hodges et al. 13. The probes on the array were based on two reference genomes 240 

(Nichols, here abbreviated as NIC_REF, GenBank ID CP004010.2/RefSeq ID NC_021490.2, and 241 

SS14, GenBank ID CP000805.1/RefSeq ID NC_010741.1). High-throughput sequencing of the 242 

enriched libraries was performed on an Illumina Hiseq 2500 platform.  243 

 
Sequencing analyses and genome reconstruction 244 

We applied EAGER 38, our own developed pipeline for read preprocessing (adapter 245 

clipping, merging of corresponding paired-end reads in the overlapping regions and quality 246 

trimming), mapping, variant identification and genome reconstruction, to all sequenced 247 

samples (for full details see Supplementary Materials and Methods). All reads (merged and 248 

unmerged) were treated as single-end reads and mapping was performed using the BWA-249 

MEM algorithm 39 with default parameters, using the Nichols genome as a reference. 250 

Subsequently, we selected the samples which had at least 80% coverage of the Nichols 251 

genome and a minimum of 3 reads (n= 28 samples, Supplementary Table 3). For each of 252 

these samples, we used the Genome Analysis Toolkit (GATK) 40 to generate a mapping 253 

assembly, applying the UnifiedGenotyper module of GATK to call reference bases and 254 

variants from the mapping. The reference base was called if the genotype quality of the call 255 

was at least 30 and the position was covered by at least 3 reads. A variant position (SNP) was 256 

called if the following criteria 3 were met: i) the position was covered by at least 3 reads; ii) 257 

the genotype quality of the call was at least 30 and iii) the minimum SNP allele frequency 258 

was 90%. If neither of the requirements for a reference base call nor the requirements for a 259 

variant call were met, the character ’N’ was inserted at the respective position. For the 260 

generation of draft genome sequences we used an in-house tool (VCF2Genome), which 261 

reads a VCF file such as produced by the GATK UnifiedGenotyper and incorporates for each 262 

row, and thus for each call, one nucleotide into the new draft sequence.  263 

In order to apply our analysis pipeline also to those samples for which complete 264 

genomic sequences are available in GenBank (Supplementary Table 2), we produced artificial 265 
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reads in these cases using an in-house tool (Genome2Reads), and then applied the same 266 

mapping, SNP calling and genome reconstruction procedure as for the sequenced samples in 267 

order to obtain consistent and comparable results.  268 

To investigate conservation of structure and gene order in the genomes, in addition to 269 

the mapping assembly, we also performed a de novo assembly for the 5 samples with 270 

highest coverage (Supplementary Table 5). Our de novo assembly pipeline started with the 271 

merged reads and in a first step utilized the short read assembler software SOAPdenovo2 272 

using ten different k-mer sizes (k = 37 + i⋅10, i=0,…,9). Different k-mer sizes were used 273 

because merging of read pairs into one single read results in very different lengths (between 274 

30 and 190 bases). Next, all input reads were mapped back against the resulting contigs 275 

using BWA-MEM 39. Contigs that were not supported by any reads (no read mapped against 276 

these contigs) were removed. In order to assemble the contigs resulting from the different k-277 

mers, the remaining contigs were subject to the overlap-based String Graph Assembler (SGA) 278 
41. Finally, contigs smaller than 1,000 bp were removed before these contigs were mapped 279 

against the Nichols reference genome for comparison of genome architectures. 280 

Analyses to detect recombinants and reconstruct evolutionary relationships using 281 

genome-wide variation were conducted for the 28 sequenced samples meeting our genome-282 

wide coverage criteria (highlighted in the Supplementary Table 3) as well as the 11 published 283 

genomes (Supplementary Table 2). Across the 39 whole genomes and draft genomes, 31 284 

were TPA, 8 TPE and 1 TEN. 285 

 
Recombination detection 286 

Tests for the non-vertical transmission of genes were carried out on the TPA, TPE and 287 

TEN genomes (n= 39) by identifying those genes that i) had an unexpectedly high number of 288 

SNPs and ii) displayed patterns of transmission (i.e., phylogenies) incongruent with most 289 

other genes. First, an expected substitution rate was computed by dividing the total number 290 

of observed SNPs in the 978 annotated genes (n=2,098) by the total length of these genes 291 

(1,046,421 bp). This rate was then used to calculate the expected number of polymorphisms 292 

per gene according to its length. A total of 87 genes displayed at least twice the expected 293 

number of polymorphisms. Second, for each of these 87 genes the gene sequence alignment 294 

and the gene tree topology were tested against the maximum likelihood tree topology of the 295 

draft genome in TREE-PUZZLE v5.2 42,43. Genes for which both the Expected Likelihood 296 

Weight 44 and the Shimodaira-Hasegawa 45 test rejected the genome tree (p < 0.05) were 297 

examined more closely. Third, genes within which we identified a minimum of 4 homoplasies 298 

(identical mutations in separate lineages) in at least 2 branches of the tree were marked as 299 

putative recombinants (Supplementary Table 6).  300 

 
Genome-wide variation and phylogenetic analyses  301 

We investigated genome-wide patterns of polymorphism and divergence using MEGA 6 46 302 

and DnaSP v.5.10 to compute various measures of diversity including the average pairwise 303 

nucleotide differences, Nei’s Pi (π), and the number of singletons in each group. We also 304 

estimated the number of SNPs private to particular groups. A comparison of the TPA and 305 

TPE/TEN genomes revealed between 1 (NIC1) and 339 (AR2) SNPs observed in the TPA 306 

samples and between 1091 (GHA1) and 1443 (Bosnia A) SNPs in the TPE/TEN strains 307 

(Supplementary Table 4). Furthermore, we produced a heat map to display the number of 308 

SNPs that any two genomes share (Supplementary Fig. 3).  309 

The molecular clock hypothesis was tested with the maximum likelihood analysis in 310 

MEGA 6.0 46. Tests were conducted for all TPA, TPE and TEN genomes (39 samples) using i) 311 
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multiple whole genome alignments and ii) alignments with only the variable positions, in 312 

both cases excluding the 4 putative recombinant genes. The molecular clock hypothesis was 313 

rejected at the 5% significance level. 314 

Bayesian phylogenetic trees were produced in BEAST 2.3 47 for the 28 sequenced 315 

samples and the 11 published samples. We compared the trees generated with the 316 

alignment of all variable positions in the TPA, TPE and TEN genomes (2,506) and the tree 317 

generated with the set of variable positions after excluding the 4 putative recombinant 318 

genes (2,235 positions). Additionally, rooted trees were generated with Maximum 319 

Parsimony by including Treponema paraluiscuniculi (NC_015714) as the outgroup. 320 

As a calibration for the BEAST trees we used tip dates, that is, the isolation years of all 321 

samples. When not known with precision, we provided a range (for NIC_REF, NIC1, NIC2, and 322 

GAU). The two demographic models (coalescent tree prior under Constant Size and the 323 

Birth-Death Serial Skyline model (BDSS)) resulted in consistent parameter estimates. The 324 

relaxed clock model was chosen over the strict clock model based on marginal likelihood 325 

estimates obtained with PathSampler 47,48. We provide results for the BDSS model run with 326 

the following specifications: uncorrelated lognormal relaxed clock-clock model, GTR plus 327 

gamma substitution model, 50 million generations with parameter sampling every 5,000 328 

generations. The log file was viewed in Tracer 1.6 49 to determine the appropriate burn-in 329 

period for adequate effective sample sizes. The annotated maximum clade credibility tree 330 

was visualized and edited using Figtree v1.4.2 50. Because TPA samples are the focus of this 331 

study and therefore more extensively sampled, we report mean branch rate and divergence 332 

estimates for the TPA lineage. The mean branch rate estimate obtained is in line with the 333 

number of mutations that differed between the samples NIC_REF and NIC 2 (n=15), which 334 

were isolated 15-20 years apart following continuous rabbit propagation. We also checked 335 

that a run with the same specifications but with only TPA samples (n=31) produced 336 

consistent results. 337 

The phylogenetic relationships among the closely related TPA samples (n=31) were 338 

examined and visualized through a median joining (MJ) network analysis in Network 4.6 and 339 

Network Publisher 51,52 using all variable positions after excluding the putative recombinant 340 

loci and sites with missing data (resulting in a total of 628 variable positions). 341 

 
Clade classification 342 

Samples from this study: From the 70 TPA, TPE and TEN samples sequenced in this study, 28 343 

fulfilled our criteria for genome-wide analyses (minimum 80% genome covered with at least 344 

3 reads). For the remaining 42 samples, we implemented two classification strategies. First, 345 

we generated a new clade prediction strategy based on NGS reads to classify the genomes 346 

according to lineage (TPA or TPE/TEN), and within the TPA lineage, as part of the SS14 or the 347 

Nichols clade (details provided in the Supplementary Information). Second, we used a 348 

classification scheme based on the TP0548 gene. For the TP0548 classification scheme we 349 

carried out PCR and Sanger sequencing of the TP0548 gene region following the protocols 350 

and primers of Matějková et al.31. Single nucleotide polymorphisms (SNPs) in the TP0548 351 

typing regions enable the distinction of an SS14 clade versus a Nichols clade. Indels enable 352 

the classification of TPE and TEN. Our NGS prediction strategy (detailed in the 353 

Supplementary Materials and Methods) was congruent with the TP0548 classification 354 

scheme wherever prediction strength was above 0.4, with the exception of 1 TEN sample.  355 

Samples from typing studies: We put together all publicly available TP0548 sequences 356 

obtained in typing studies of syphilis infections around the world 12,53–60. We additionally 357 

incorporated TP0548 sequences obtained for 34 Argentinian clinical samples by LGV at the 358 
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University of Buenos Aires, Argentina (Supplementary Table 8). All TP0548 sequences were 359 

classified as part of the SS14 clade or part of the Nichols clade based on an ML tree 360 

(Supplementary Fig. 5). Subtypes were distinguished through visual inspection 361 

(Supplementary Table 8). 362 

 
Antibiotic resistance 363 

The two mutations associated with resistance to the macrolide azithromycin, A2058G 364 

and A2059G on the 23S ribosomal RNA operon (with positions referring to coordinates in the 365 

23S ribosomal RNA gene of Escherichia coli), were investigated in separate analyses. Since 366 

the operon contains two copies of the gene, mapping of reads with BWA was carried out 367 

independently for each of the genes, including a flanking region of 200 bases on both the 5’ 368 

and 3’ end of each genes. Following variant calling, the presence/absence of each of the two 369 

mutations was recorded for each sample. The two operons could not, however, be 370 

distinguished.  371 

In addition, we used primers specific for each of the two operons to carry out PCR 372 

amplifications as well as Sanger sequencing on the samples, following the protocol in 373 

Matějková et al.31. Details on the samples sequenced, as well as resistance or sensitivity to 374 

the macrolide as determined by the presence or absence of the associated mutations are 375 

given in Supplementary Table 7.  376 

 
Data availability 377 

All samples sequenced in this study are available in an NCBI Bioproject under accession 378 

number PRJNA313497. Raw sequencing reads in FASTQ format were uploaded to the Short 379 

Read Archive (SRA). All accession codes are listed in Supplementary Table 2. Code for the in-380 

house scripts developed for some of the analyses are available upon request from the 381 

authors.  382 
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Figure Legends 542 

Figure 1 | De novo genome assemblies and phylogenetic reconstruction. a, De novo 543 

genome assembly for four syphilis patient samples and one yaws strain, with color coded 544 

geographic origin (inset legend). Blank spaces correspond to gaps, overlapping with gene 545 

regions that are difficult to assemble from short reads such as the tpr subfamilies and rRNA 546 

operons (regions shown in the outermost ring in gray). b, BEAST tree for the 39 genomes 547 

(excluding putative recombinant genes), with black circles for nodes with ≥96% posterior 548 

probabilities (PP); dark gray circles for nodes with 91-95% PP; and white circles for nodes 549 

with 81-85% PP. Divergence date estimates (mean and 95% highest posterior density) for 550 

major well-supported TPA nodes are given in the legend. 551 

Figure 2│Median-joining (MJ) network analysis and geographic distribution of the SS14 and 552 

Nichols clades. a, Median-joining network for genome-wide variable positions after 553 

excluding sites with missing data (n=682). Circles represent haplotypes, with geographical 554 

origin color-coded. Number of mutations, when above one, is shown next to the lines. 555 

Inferred haplotypes (median vectors) are shown as black connecting circles. Central black 556 
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circles within haplotypes indicate mutations associated with azithromycin resistance. b, 557 

Relative frequencies of SS14 versus Nichols clade isolates across the globe shown in the pie 558 

charts, with sizes proportional to sampling efforts. SS14 clade and Nichols classification are 559 

based on the TP0548 gene. 560 
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