1,238 research outputs found

    Direct activation of KCC2 arrests benzodiazepine refractory status epilepticus and limits the subsequent neuronal injury in mice

    Get PDF
    Hyperpolarizing GABAAR currents, the unitary events that underlie synaptic inhibition, are dependent upon efficient Cl− extrusion, a process that is facilitated by the neuronal specific K+/Cl− co-transporter KCC2. Its activity is also a determinant of the anticonvulsant efficacy of the canonical GABAAR-positive allosteric: benzodiazepines (BDZs). Compromised KCC2 activity is implicated in the pathophysiology of status epilepticus (SE), a medical emergency that rapidly becomes refractory to BDZ (BDZ-RSE). Here, we have identified small molecules that directly bind to and activate KCC2, which leads to reduced neuronal Cl− accumulation and excitability. KCC2 activation does not induce any overt effects on behavior but prevents the development of and terminates ongoing BDZ-RSE. In addition, KCC2 activation reduces neuronal cell death following BDZ-RSE. Collectively, these findings demonstrate that KCC2 activation is a promising strategy to terminate BDZ-resistant seizures and limit the associated neuronal injury

    The distribution of pond snail communities across a landscape: separating out the influence of spatial position from local habitat quality for ponds in south-east Northumberland, UK

    Get PDF
    Ponds support a rich biodiversity because the heterogeneity of individual ponds creates, at the landscape scale, a diversity of habitats for wildlife. The distribution of pond animals and plants will be influenced by both the local conditions within a pond and the spatial distribution of ponds across the landscape. Separating out the local from the spatial is difficult because the two are often linked. Pond snails are likely to be affected by both local conditions, e.g. water hardness, and spatial patterns, e.g. distance between ponds, but studies of snail communities struggle distinguishing between the two. In this study, communities of snails were recorded from 52 ponds in a biogeographically coherent landscape in north-east England. The distribution of snail communities was compared to local environments characterised by the macrophyte communities within each pond and to the spatial pattern of ponds throughout the landscape. Mantel tests were used to partial out the local versus the landscape respective influences. Snail communities became more similar in ponds that were closer together and in ponds with similar macrophyte communities as both the local and the landscape scale were important for this group of animals. Data were collected from several types of ponds, including those created on nature reserves specifically for wildlife, old field ponds (at least 150 years old) primarily created for watering livestock and subsidence ponds outside protected areas or amongst coastal dunes. No one pond type supported all the species. Larger, deeper ponds on nature reserves had the highest numbers of species within individual ponds but shallow, temporary sites on farm land supported a distinct temporary water fauna. The conservation of pond snails in this region requires a diversity of pond types rather than one idealised type and ponds scattered throughout the area at a variety of sites, not just concentrated on nature reserves

    Two-tier charging in Maputo Central Hospital: Costs, revenues and effects on equity of access to hospital services

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Special services within public hospitals are becoming increasingly common in low and middle income countries with the stated objective of providing higher comfort services to affluent customers and generating resources for under funded hospitals. In the present study expenditures, outputs and costs are analysed for the Maputo Central Hospital and its Special Clinic with the objective of identifying net resource flows between a system operating two-tier charging, and, ultimately, understanding whether public hospitals can somehow benefit from running Special Clinic operations.</p> <p>Methods</p> <p>A combination of step-down and bottom-up costing strategies were used to calculate recurrent as well as capital expenses, apportion them to identified cost centres and link costs to selected output measures.</p> <p>Results</p> <p>The results show that cost differences between main hospital and clinic are marked and significant, with the Special Clinic's cost per patient and cost per outpatient visit respectively over four times and over thirteen times their equivalent in the main hospital.</p> <p>Discussion</p> <p>While the main hospital cost structure appeared in line with those from similar studies, salary expenditures were found to drive costs in the Special Clinic (73% of total), where capital and drug costs were surprisingly low (2 and 4% respectively). We attributed low capital and drug costs to underestimation by our study owing to difficulties in attributing the use of shared resources and to the Special Clinic's outsourcing policy. The large staff expenditure would be explained by higher physician time commitment, economic rents and subsidies to hospital staff. On the whole it was observed that: (a) the flow of capital and human resources was not fully captured by the financial systems in place and stayed largely unaccounted for; (b) because of the little consideration given to capital costs, the main hospital is more likely to be subsidising its Special Clinic operations, rather than the other way around.</p> <p>Conclusion</p> <p>We conclude that the observed lack of transparency may create scope for an inequitable cross subsidy of private customers by public resources.</p

    The rapid assembly of an elliptical galaxy of 400 billion solar masses at a redshift of 2.3

    Get PDF
    Stellar archeology shows that massive elliptical galaxies today formed rapidly about ten billion years ago with star formation rates above several hundreds solar masses per year (M_sun/yr). Their progenitors are likely the sub-millimeter-bright galaxies (SMGs) at redshifts (z) greater than 2. While SMGs' mean molecular gas mass of 5x10^10 M_sun can explain the formation of typical elliptical galaxies, it is inadequate to form ellipticals that already have stellar masses above 2x10^11 M_sun at z ~ 2. Here we report multi-wavelength high-resolution observations of a rare merger of two massive SMGs at z = 2.3. The system is currently forming stars at a tremendous rate of 2,000 M_sun/yr. With a star formation efficiency an order-of-magnitude greater than that of normal galaxies, it will quench the star formation by exhausting the gas reservoir in only ~200 million years. At a projected separation of 19 kiloparsecs, the two massive starbursts are about to merge and form a passive elliptical galaxy with a stellar mass of ~4x10^11 M_sun. Our observations show that gas-rich major galaxy mergers, concurrent with intense star formation, can form the most massive elliptical galaxies by z ~ 1.5.Comment: Appearing in Nature online on May 22 and in print on May 30. Submitted here is the accepted version (including the Supplementary Information), see nature.com for the final versio

    Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production

    Get PDF
    © 2014 Pandit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SPD against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection. © 2014 Pandit et al.The work (Project no. 2011-16850) was supported by Medical Innovation Fund of Indian Council of Medical Research, New Delhi, India (www.icmr.nic.in/)

    Mucosal Lipocalin 2 Has Pro-Inflammatory and Iron-Sequestering Effects in Response to Bacterial Enterobactin

    Get PDF
    Nasal colonization by both gram-positive and gram-negative pathogens induces expression of the innate immune protein lipocalin 2 (Lcn2). Lcn2 binds and sequesters the iron-scavenging siderophore enterobactin (Ent), preventing bacterial iron acquisition. In addition, Lcn2 bound to Ent induces release of IL-8 from cultured respiratory cells. As a countermeasure, pathogens of the Enterobacteriaceae family such as Klebsiella pneumoniae produce additional siderophores such as yersiniabactin (Ybt) and contain the iroA locus encoding an Ent glycosylase that prevents Lcn2 binding. Whereas the ability of Lcn2 to sequester iron is well described, the ability of Lcn2 to induce inflammation during infection is unknown. To study each potential effect of Lcn2 on colonization, we exploited K. pneumoniae mutants that are predicted to be susceptible to Lcn2-mediated iron sequestration (iroA ybtS mutant) or inflammation (iroA mutant), or to not interact with Lcn2 (entB mutant). During murine nasal colonization, the iroA ybtS double mutant was inhibited in an Lcn2-dependent manner, indicating that the iroA locus protects against Lcn2-mediated growth inhibition. Since the iroA single mutant was not inhibited, production of Ybt circumvents the iron sequestration effect of Lcn2 binding to Ent. However, colonization with the iroA mutant induced an increased influx of neutrophils compared to the entB mutant. This enhanced neutrophil response to Ent-producing K. pneumoniae was Lcn2-dependent. These findings suggest that Lcn2 has both pro-inflammatory and iron-sequestering effects along the respiratory mucosa in response to bacterial Ent. Therefore, Lcn2 may represent a novel mechanism of sensing microbial metabolism to modulate the host response appropriately

    Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing

    Get PDF
    Voltage-gated sodium channels are vital membrane proteins essential for electrical signalling; in humans, they are key targets for the development of pharmaceutical drugs. Here we report the crystal structure of an open-channel conformation of NavMs, the bacterial channel pore from the marine bacterium Magnetococcus sp. (strain MC-1). It differs from the recently published crystal structure of a closed form of a related bacterial sodium channel (NavAb) by having its internal cavity accessible to the cytoplasmic surface as a result of a bend/rotation about a central residue in the carboxy-terminal transmembrane segment. This produces an open activation gate of sufficient diameter to allow hydrated sodium ions to pass through. Comparison of the open and closed structures provides new insight into the features of the functional states present in the activation cycles of sodium channels and the mechanism of channel opening and closing

    The continuum of spreading depolarizations in acute cortical lesion development: Examining Leão's legacy.

    Get PDF
    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage

    Fast Economic Development Accelerates Biological Invasions in China

    Get PDF
    Increasing levels of global trade and intercontinental travel have been cited as the major causes of biological invasion. However, indirect factors such as economic development that affect the intensity of invasion have not been quantitatively explored. Herein, using principal factor analysis, we investigated the relationship between biological invasion and economic development together with climatic information for China from the 1970s to present. We demonstrate that the increase in biological invasion is coincident with the rapid economic development that has occurred in China over the past three decades. The results indicate that the geographic prevalence of invasive species varies substantially on the provincial scale, but can be surprisingly well predicted using the combination of economic development (R2 = 0.378) and climatic factors (R2 = 0.347). Economic factors are proven to be at least equal to if not more determinant of the occurrence of invasive species than climatic factors. International travel and trade are shown to have played a less significant role in accounting for the intensity of biological invasion in China. Our results demonstrate that more attention should be paid to economic factors to improve the understanding, prediction and management of biological invasions
    corecore