459 research outputs found

    The centrifugal force reversal and X-ray bursts

    Full text link
    Heyl (2000) made an interesting suggestion that the observed shifts in QPO frequency in type I X-ray bursts could be influenced by the same geometrical effect of strong gravity as the one that causes centrifugal force reversal discovered by Abramowicz and Lasota (1974). However, his main result contains a sign error. Here we derive the correct formula and conclude that constraints on the M(R) relation for neutron stars deduced from the rotational-modulation model of QPO frequency shifts are of no practical interest because the correct formula implies a weak condition R* > 1.3 Rs, where Rs is the Schwarzschild radius. We also argue against the relevance of the rotational-modulation model to the observed frequency modulations.Comment: 3 pages, Minor revisions, A&A Letters, in pres

    Excitation of Trapped Waves in Simulations of Tilted Black Hole Accretion Disks with Magnetorotational Turbulence

    Full text link
    We analyze the time dependence of fluid variables in general relativistic, magnetohydrodynamic simulations of accretion flows onto a black hole with dimensionless spin parameter a/M=0.9. We consider both the case where the angular momentum of the accretion material is aligned with the black hole spin axis (an untilted flow) and where it is misaligned by 15 degrees (a tilted flow). In comparison to the untilted simulation, the tilted simulation exhibits a clear excess of inertial variability, that is, variability at frequencies below the local radial epicyclic frequency. We further study the radial structure of this inertial-like power by focusing on a radially extended band at 118 (M/10Msol)^-1 Hz found in each of the three analyzed fluid variables. The three dimensional density structure at this frequency suggests that the power is a composite oscillation whose dominant components are an over dense clump corotating with the background flow, a low order inertial wave, and a low order inertial-acoustic wave. Our results provide preliminary confirmation of earlier suggestions that disk tilt can be an important excitation mechanism for inertial waves.Comment: 8 Pages, 6 Figures, accepted for publication in Ap

    XMM-Newton observations of AM CVn binaries : V396 Hya and SDSS J1240–01

    Get PDF
    We present the results of XMM-Newton observations of two AM CVn systems - V396 Hya and SDSS J1240-01. Both systems are detected in X-rays and in the UV: neither shows coherent variability in their light curves. We compare the rms variability of the X-ray and UV power spectra of these sources with other AM CVn systems. Apart from ES Cet, AM CVn sources are not strongly variable in X-rays, while in the UV the degree of variability is related to the systems apparent brightness. The X-ray spectra of V396 Hya and SDSS J1240-01 show highly non-solar abundances, requiring enhanced nitrogen to obtain good fits. We compare the UV and X-ray luminosities for 7 AM CVn systems using recent distances. We find that the X-ray luminosity is not strongly dependent upon orbital period. However, the UV luminosity is highly correlated with orbital period with the UV luminosity decreasing with increasing orbital period. We expect that this is due to the accretion disk making an increasingly strong contribution to the UV emission at shorter periods. The implied luminosities are in remarkably good agreement with predictions

    Relativistic Astrophysics Explorer

    Full text link
    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 6 m^2 equal to ten times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.Comment: to appear in Advances in Space Research, 6 pages with one color figure (low-res

    Neutron specific heat in the crust of neutron stars from the nuclear band theory

    Full text link
    The inner crust of neutron stars, formed of a crystal lattice of uclear clusters immersed in a sea of unbound neutrons, may be the nique example of periodic nuclear systems. We have calculated the neutron specific heat in the shallow part of the crust using the band theory of solids with Skyrme nucleon-nucleon interactions. We have also tested the validity of various approximations. We have found that the neutron specific heat is well described by that of a Fermi gas, while the motion of the unbound neutrons is strongly affected by the nuclear lattice. These apparently contradictory results are explained by the particular properties of the neutron Fermi surface

    The Long Term Stability of Oscillations During Thermonuclear X-ray Bursts: Constraining the Binary X-ray Mass Function

    Get PDF
    We report on the long term stability of the millisecond oscillations observed with the Rossi X-ray Timing Explorer (RXTE) during thermonuclear X-ray bursts from the low mass X-ray binaries (LMXB) 4U 1728-34 and 4U 1636-53. We show that bursts from 4U 1728-34 spanning more than 1.5 years have observed asymptotic oscillation periods which are within 0.2 microsec. of each other, well within the magnitude which could be produced by the orbital motion of the neutron star in a typical LMXB. This stability implies a timescale to change the oscillation period of > 23,000 years, suggesting a highly stable process such as stellar rotation as the oscillation mechanism. We show that period offsets in three distinct bursts from 4U 1636-53 can be plausibly interpreted as due to orbital motion of the neutron star in this 3.8 hour binary system. We discuss the constraints on the mass function which can in principle be derived using this technique.Comment: 11 pages, 4 figures. AASTeX, to be published in the Astrophysical Journal Letter

    Microscopic sub-barrier fusion calculations for the neutron star crust

    Get PDF
    Fusion of very neutron rich nuclei may be important to determine the composition and heating of the crust of accreting neutron stars. Fusion cross sections are calculated using time-dependent Hartree-Fock theory coupled with density-constrained Hartree-Fock calculations to deduce an effective potential. Systems studied include 16O+16O, 16O+24O, 24O+24O, 12C+16O, and 12C+24O. We find remarkable agreement with experimental cross sections for the fusion of stable nuclei. Our simulations use the SLy4 Skyrme force that has been previously fit to the properties of stable nuclei, and no parameters have been fit to fusion data. We compare our results to the simple S\~{a}o Paulo static barrier penetration model. For the asymmetric systems 12C+24O or 16O+24O we predict an order of magnitude larger cross section than those predicted by the S\~{a}o Paulo model. This is likely due to the transfer of neutrons from the very neutron rich nucleus to the stable nucleus and dynamical rearrangements of the nuclear densities during the collision process. These effects are not included in potential models. This enhancement of fusion cross sections, for very neutron rich nuclei, can be tested in the laboratory with radioactive beams.Comment: 9 pages, 11 figures, corrected small errors in Figs 10, 11, Phys. Rev. C in pres

    High-frequency Quasi-Periodic Oscillations from GRS 1915+105 in its C state

    Get PDF
    We report the results of a systematic timing analysis of RXTE observations of GRS 1915+105 when the source was in its variability class theta, characterized by alternating soft and hard states on a time scale of a few hundred seconds. The aim was to examine the high-frequency part of the power spectrum in order to confirm the hecto-Hertz Quasi-Periodic Oscillations (QPO) previously reported from observations from mixed variability behaviours. During the hard intervals (corresponding to state C in the classification of Belloni et al., 2000, A&A, 35, 271), we find a significant QPO at a frequency of ~170 Hz, although much broader (Q~2) than previously reported. No other significant peak is observed at frequencies >30 Hz. A time-resolved spectral analysis of selected observations shows that the hard intervals from class theta show a stronger and steeper (Gamma=2.8-3.0) power-law component than hard intervals from other classes. We discuss these results in the framework of hecto-Hertz QPOs reported from GRS 1915+105 and other black-hole binaries.Comment: 7 pages, 8 figures, accepted for publication on MNRA

    An Fe XXVI Absorption Line in the Persistent Spectrum of the Dipping Low Mass X-ray Binary 1A 1744-361

    Get PDF
    We report on Chandra X-ray Observatory (CXO) High-Energy Transmission Grating (HETG) spectra of the dipping Low Mass X-ray Binary (LMXB) 1A 1744-361 during its July 2008 outburst. We find that its persistent emission is well modeled by a blackbody (kT ~ 1.0 keV) plus power-law (Γ\Gamma ~ 1.7) with an absorption edge at 7.6 keV. In the residuals of the combined spectrum we find a significant absorption line at 6.961+/-0.002 keV, consistent with the Fe XXVI (hydrogen-like Fe) 2 - 1 transition. We place an upper limit on the velocity of a redshifted flow of v < 221 km/s. We find an equivalent width for the line of 27^+2_-3 eV, from which we determine a column density of 7+/-1x10^17 cm^-2 via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of > 10^3.6 erg cm/s. The properties of this line are consistent with those observed in other dipping LMXBs. Using Rossi X-ray Timing Explorer (RXTE) data accumulated during this latest outburst we present an updated color-color diagram which clearly shows that 1A 1744-361 is an "atoll" source. Finally, using additional dips found in the RXTE and CXO data we provide an updated orbital period estimate of 52+/-5 minutes.Comment: 8 pages, 7 figures, submitted to Ap

    Carbon Flashes in the Heavy Element Ocean on Accreting Neutron Stars

    Get PDF
    We show that burning of a small mass fraction of carbon in a neutron star ocean is thermally unstable at low accumulated masses when the ocean contains heavy ashes from the hydrogen burning rapid proton (rp) process. The key to early unstable ignition is the low thermal conductivity of a heavy element ocean. The instability requires accretion rates in excess of one-tenth the Eddington limit when the carbon mass fraction is 0.1 or less. The unstable flashes release 10^{42} to 10^{43} ergs over hours to days, and are likely the cause of the recently discovered large Type I X-ray bursts (so-called ``superbursts'') from six Galactic low mass X-ray binaries. In addition to explaining the energetics, recurrence times, and durations of the superbursts, these mixed carbon/heavy element flashes have an accretion rate dependence of unstable burning similar to that observed. Though the instability is present at accretion rates near Eddington, there is less contrast with the accretion luminosity there, explaining why most detections are made at accretion rates between 0.1 and 0.3 Eddington. Future comparisons of time dependent calculations with observations will provide new insights into the rp process.Comment: Submitted to Astrophysical Journal Letters (6 pages, 3 figures
    • 

    corecore