80 research outputs found

    Active-distributed temperature sensing to continuously quantify vertical flow in boreholes

    Get PDF
    We show how a distributed borehole flowmeter can be created from armored Fiber Optic cables with the Active-Distributed Temperature Sensing (A-DTS) method. The principle is that in a flowing fluid, the difference in temperature between a heated and unheated cable is a function of the fluid velocity. We outline the physical basis of the methodology and report on the deployment of a prototype A-DTS flowmeter in a fractured rock aquifer. With this design, an increase in flow velocity from 0.01 to 0.3 m s−1 elicited a 2.5°C cooling effect. It is envisaged that with further development this method will have applications where point measurements of borehole vertical flow do not fully capture combined spatiotemporal dynamics

    Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Estuaries and Coasts 35 (2012): 369-382, doi:10.1007/s12237-011-9386-6.River inputs of nutrients and organic matter impact the biogeochemistry of arctic estuaries and the Arctic Ocean as a whole, yet there is considerable uncertainty about the magnitude of fluvial fluxes at the pan-arctic scale. Samples from the six largest arctic rivers, with a combined watershed area of 11.3 x 106 km2, have revealed strong seasonal variations in constituent concentrations and fluxes within rivers as well as large differences among the rivers. Specifically, we investigate fluxes of dissolved organic carbon, dissolved organic nitrogen, total dissolved phosphorus, dissolved inorganic nitrogen, nitrate, and silica. This is the first time that seasonal and annual constituent fluxes have been determined using consistent sampling and analytical methods at the pan arctic scale, and consequently provide the best available estimates for constituent flux from land to the Arctic Ocean and surrounding seas. Given the large inputs of river water to the relatively small Arctic Ocean, and the dramatic impacts that climate change is having in the Arctic, it is particularly urgent that we establish the contemporary river fluxes so that we will be able to detect future changes and evaluate the impact of the changes on the biogeochemistry of the receiving coastal and ocean systems.This work was supported by the National Science Foundation through grants OPP-0229302, OPP-0519840, OPP-0732522, and OPP-0732944. Additional support was provided by the U. S. Geological Survey (Yukon River) and the Department of Indian and Northern Affairs (Mackenzie River)

    Spatial patterns of enzymatic activity in large water bodies: Ship-borne measurements of beta-D-glucuronidase activity as a rapid indicator of microbial water quality

    Get PDF
    This study used automated enzymatic activity measurements conducted from a mobile research vessel to detect the spatial variability of beta‑d‑glucuronidase (GLUC) activity in large freshwater bodies. The ship-borne observations provided the first high-resolution spatial data of GLUC activity in large water bodies as rapid indication of fecal pollution and were used to identify associations with hydrological conditions and land use. The utility of this novel approach for water quality screening was evaluated by surveys of the Columbia River, the Mississippi River and the Yahara Lakes, covering up to a 500 km river course and 50 km2 lake area. The ship-borne measurements of GLUC activity correlated with standard E. coli analyses (R2 = 0.71) and revealed the effects of (1) precipitation events and urban run-off on GLUC activity in surface waters, (2) localized point inlets of potential fecal pollution and (3) increasing GLUC signals along gradients of urbanization. We propose that this ship-borne water quality screening to be integrated into future water inventory programs as an initial or complementary tool (besides established fecal indicator parameters), due to its ability to provide near real-time spatial information on potential fecal contamination of large surface water resources and therefore being helpful to greatly reduce potential human health risks.Austrian Science Fund (FWF)Vienna University of TechnologyNorth Temperate Lakes–Long Term Ecological Researc

    Global abundance and size distribution of streams and rivers

    Get PDF
    To better integrate lotic ecosystems into global cycles and budgets, we provide approximations of the size-distribution and areal extent of streams and rivers. One approach we used was to employ stream network theory combined with data on stream width. We also used detailed stream networks on 2 continents to estimate the fraction of continental area occupied by streams worldwide and corrected remote sensing stream inventories for unresolved small streams. Our estimates of global fluvial area are 485 000 to 662 000 km2 and are +30–300% of published appraisals. Moderately sized rivers (orders 5–9) seem to comprise the greatest global area, with less area covered by low and high order streams, while global stream length, and therefore the riparian interface, is dominated by 1st order streams. Rivers and streams are likely to cover 0.30–0.56% of the land surface and make contributions to global processes and greenhouse gas emissions that may be +20–200% greater than those implied by previous estimates

    Cyclic stretch increases splicing noise rate in cultured human fibroblasts

    Get PDF
    BACKGROUND: Mechanical forces are known to alter the expression of genes, but it has so far not been reported whether they may influence the fidelity of nucleus-based processes. One experimental approach permitting to address this question is the application of cyclic stretch to cultured human fibroblasts. As a marker for the precision of nucleus-based processes, the number of errors that occur during co-transcriptional splicing can then be measured. This so-called splicing noise is found at low frequency in pre-mRNA splicing. FINDINGS: The amount of splicing noise was measured by RT-qPCR of seven exon skips from the test genes AATF, MAP3K11, NF1, PCGF2, POLR2A and RABAC1. In cells treated by altered uniaxial cyclic stretching for 18 h, a uniform and significant increase of splicing noise was found for all detectable exon skips. CONCLUSION: Our data demonstrate that application of cyclic stretch to cultured fibroblasts correlates with a reduced transcriptional fidelity caused by increasing splicing noise

    Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management

    Get PDF
    The extreme 2018 hot drought that affected central and northern Europe led to the worst wildfire season in Sweden in over a century. The Ljusdal fire complex, the largest area burnt that year (8995 ha), offered a rare opportunity to quantify the combined impacts of wildfire and post-fire management on Scandinavian boreal forests. We present chamber measurements of soil CO2 and CH4 fluxes, soil microclimate and nutrient content from five Pinus sylvestris sites for the first growing season after the fire. We analysed the effects of three factors on forest soils: burn severity, salvage-logging and stand age. None of these caused significant differences in soil CH4 uptake. Soil respiration, however, declined significantly after a high-severity fire (complete tree mortality) but not after a low-severity fire (no tree mortality), despite substantial losses of the organic layer. Tree root respiration is thus key in determining post-fire soil CO2 emissions and may benefit, along with heterotrophic respiration, from the nutrient pulse after a low-severity fire. Salvage-logging after a high-severity fire had no significant effects on soil carbon fluxes, microclimate or nutrient content compared with leaving the dead trees standing, although differences are expected to emerge in the long term. In contrast, the impact of stand age was substantial: a young burnt stand experienced more extreme microclimate, lower soil nutrient supply and significantly lower soil respiration than a mature burnt stand, due to a thinner organic layer and the decade-long effects of a previous clear-cut and soil scarification. Disturbance history and burn severity are, therefore, important factors for predicting changes in the boreal forest carbon sink after wildfires. The presented short-term effects and ongoing monitoring will provide essential information for sustainable management strategies in response to the increasing risk of wildfire

    The processing and impact of dissolved riverine nitrogen in the Arctic Ocean

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 35 (2012): 401-415, doi:10.1007/s12237-011-9417-3.Although the Arctic Ocean is the most riverine-influenced of all of the world’s oceans, the importance of terrigenous nutrients in this environment is poorly understood. This study couples estimates of circumpolar riverine nutrient fluxes from the PARTNERS (Pan-Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments) Project with a regionally configured version of the MIT general circulation model to develop estimates of the distribution and availability of dissolved riverine N in the Arctic Ocean, assess its importance for primary production, and compare these estimates to potential bacterial production fueled by riverine C. Because riverine dissolved organic nitrogen is remineralized slowly, riverine N is available for uptake well into the open ocean. Despite this, we estimate that even when recycling is considered, riverine N may support 0.5–1.5 Tmol C year−1 of primary production, a small proportion of total Arctic Ocean photosynthesis. Rapid uptake of dissolved inorganic nitrogen coupled with relatively high rates of dissolved organic nitrogen regeneration in N-limited nearshore regions, however, leads to potential localized rates of riverine-supported photosynthesis that represent a substantial proportion of nearshore production.Funding for this work was provided through NSFOPP- 0229302 and NSF-OPP-0732985.Support to SET was additionally provided by an NSERC Postdoctoral Fellowship

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced
    • 

    corecore