26 research outputs found
Caveolin-3 deficiency associated with the dystrophy P104L mutation impairs skeletal muscle mitochondrial form and function
Abstract Background Caveolinâ3 (Cav3) is the principal structural component of caveolae in skeletal muscle. Dominant pathogenic mutations in the Cav3 gene, such as the Limb Girdle Muscular Dystrophyâ1C (LGMD1C) P104L mutation, result in substantial loss of Cav3 and myopathic changes characterized by muscle weakness and wasting. We hypothesize such myopathy may also be associated with disturbances in mitochondrial biology. Herein, we report studies assessing the effects of Cav3 deficiency on mitochondrial form and function in skeletal muscle cells. Methods L6 myoblasts were stably transfected with Cav3P104L or expression of native Cav3 repressed by shRNA or CRISPR/Cas9 genome editing prior to performing fixed/live cell imaging of mitochondrial morphology, subcellular fractionation and immunoblotting, or analysis of real time mitochondrial respiration. Skeletal muscle from wildâtype and Cav3â/â mice was processed for analysis of mitochondrial proteins by immunoblotting. Results Caveolinâ3 was detected in mitochondrialâenriched membranes isolated from mouse gastrocnemius muscle and L6 myoblasts. Expression of Cav3P104L in L6 myoblasts led to its targeting to the Golgi and loss of native Cav3 (>95%), including that associated with mitochondrial membranes. Cav3P104L reduced mitochondrial mass and induced fragmentation of the mitochondrial network that was associated with significant loss of proteins involved in mitochondrial biogenesis, respiration, morphology, and redox function [i.e. PGC1α, succinate dehyrdogenase (SDHA), ANT1, MFN2, OPA1, and MnSOD). Furthermore, Cav3P104L myoblasts exhibited increased mitochondrial cholesterol and loss of cardiolipin. Consistent with these changes, Cav3P104L expression reduced mitochondrial respiratory capacity and increased myocellular superoxide production. These morphological, biochemical, and functional mitochondrial changes were phenocopied in myoblasts in which Cav3 had been silenced/knockedâout using shRNA or CRISPR. Reduced mitochondrial mass, PGC1α, SDHA, ANT1, and MnSOD were also demonstrable in Cav3â/â mouse gastrocnemius. Strikingly, Cav3 reâexpression in Cav3KO myoblasts restored its mitochondrial association and facilitated reformation of a tubular mitochondrial network. Significantly, reâexpression also mitigated changes in mitochondrial superoxide, cholesterol, and cardiolipin content and recovered cellular respiratory capacity. Conclusions Our results identify Cav3 as an important regulator of mitochondrial homeostasis and reveal that Cav3 deficiency in muscle cells associated with the Cav3P104L mutation invokes major disturbances in mitochondrial respiration and energy status that may contribute to the pathology of LGMD1C
GSK3-mediated raptor phosphorylation supports amino acid-dependent Q2 mTORC1-directed signalling
The mammalian or mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) is a ubiquitously expressed multimeric protein kinase complex that integrates nutrient and growth factor signals for the co-ordinated regulation of cellular metabolism and cell growth. Herein, we demonstrate that suppressing the cellular activity of glycogen synthase kinase-3 (GSK3), by use of pharmacological inhibitors or shRNA-mediated gene silencing, results in substantial reduction in amino acid (AA)-regulated mTORC1-directed signalling, as assessed by phosphorylation of multiple downstream mTORC1 targets. We show that GSK3 regulates mTORC1 activity through its ability to phosphorylate the mTOR-associated scaffold protein raptor (regulatory-associated protein of mTOR) on Ser(859). We further demonstrate that either GSK3 inhibition or expression of a S859A mutated raptor leads to reduced interaction between mTOR and raptor and under these circumstances, irrespective of AA availability, there is a consequential loss in phosphorylation of mTOR substrates, such as p70S6K1 (ribosomal S6 kinase 1) and uncoordinated-51-like kinase (ULK1), which results in increased autophagic flux and reduced cellular proliferation
Characterising the inhibitory actions of ceramide upon insulin signaling in different skeletal muscle cell models:a mechanistic insight
International audienceCeramides are known to promote insulin resistance in a number of metabolically important tissues including skeletal muscle, the predominant site of insulin-stimulated glucose disposal. Depending on cell type, these lipid intermediates have been shown to inhibit protein kinase B (PKB/Akt), a key mediator of the metabolic actions of insulin, via two distinct pathways: one involving the action of atypical protein kinase C (aPKC) isoforms, and the second dependent on protein phosphatase-2A (PP2A). The main aim of this study was to explore the mechanisms by which ceramide inhibits PKB/Akt in three different skeletal muscle-derived cell culture models; rat L6 myotubes, mouse C2C12 myotubes and primary human skeletal muscle cells. Our findings indicate that the mechanism by which ceramide acts to repress PKB/Akt is related to the myocellular abundance of caveolin-enriched domains (CEM) present at the plasma membrane. Here, we show that ceramide-enriched-CEMs are markedly more abundant in L6 myotubes compared to C2C12 myotubes, consistent with their previously reported role in coordinating aPKC-directed repression of PKB/Akt in L6 muscle cells. In contrast, a PP2A-dependent pathway predominantly mediates ceramide-induced inhibition of PKB/Akt in C2C12 myotubes. In addition, we demonstrate for the first time that ceramide engages an aPKC-dependent pathway to suppress insulin-induced PKB/Akt activation in palmitate-treated cultured human muscle cells as well as in muscle cells from diabetic patients. Collectively, this work identifies key mechanistic differences, which may be linked to variations in plasma membrane composition, underlying the insulin-desensitising effects of ceramide in different skeletal muscle cell models that are extensively used in signal transduction and metabolic studies
Franchises lost and gained: post-coloniality and the development of womenâs rights in Canada
The Canadian constitution is to some extent characterised by its focus on equality, and in particular gender equality. This development of womenâs rights in Canada and the greater engagement of women as political actors is often presented as a steady linear process, moving forwards from post-enlightenment modernity. This article seeks to disturb this âdiscourse of the continuous,â by using an analysis of the pre-confederation history of suffrage in Canada to both refute a simplistic linear view of womenâs rights development and to argue for recognition of the Indigenous contribution to the history of womenâs rights in Canada.
The gain of franchise and suffrage movements in Canada in the late nineteenth and early twentieth century are, rightly, the focus of considerable study (Pauker 2015), This article takes an alternative perspective. Instead, it examines the exercise of earlier franchises in pre-confederation Canada. In particular it analyses why franchise was exercised more widely in Lower Canada and relates this to the context of the removal of franchises from women prior to confederation
Alphaviruses and host cell interactions
EThOS - Electronic Theses Online ServiceGBUnited Kingdo