418 research outputs found

    Parity Effects in Stacked Nanoscopic Quantum Rings

    Full text link
    The ground state and the dielectric response of stacked quantum rings are investigated in the presence of an applied magnetic field along the ring axis. For odd number NN of rings and an electric field perpendicular to the axis, a linear Stark effect occurs at distinct values of the magnetic field. At those fields energy levels cross in the absence of electric field. For even values of NN a quadratic Stark effect is expected in all cases, but the induced electric polarization is discontinuous at those special magnetic fields. Experimental consequences for related nanostructures are discussed.Comment: typos corrected, to appear Phys. Rev. B (Rapid Communication) 15 Au

    The behavior of fuel-lean premixed flames in a standard flammability limit tube under controlled gravity conditions

    Get PDF
    Fuel-lean flames in methane-air mixtures from 4.90 to 6.20 volume percent fuel and propane-air mixtures from 1.90 to 3.00 volume percent fuel were studied in the vicinity of the limit for a variety of gravity conditions. The limits were determined and the behavior of the flames studied for one g upward, one g downward, and zero g propagation. Photographic records of all flammability tube firings were obtained. The structure and behavior of these flames were detailed including the variations of the curvature of the flame front, the skirt length, and the occurrence of cellular instabilities with varying gravity conditions. The effect of ignition was also discussed. A survey of flame speeds as a function of mixture strength was made over a range of lean mixture compositions for each of the fuels studied. The results were presented graphically with those obtained by other researchers. The flame speed for constant fractional gravity loadings were plotted as a function of gravity loadings from 0.0 up to 2.0 g's against flame speeds extracted from the transient gravity flame histories for corresponding gravity loadings. The effects of varying gravity conditions on the extinguishment process for upward and downward propagating flames were investigated

    Nonlinear cellular instabilities of planar premixed flames: numerical simulations of the Reactive Navier-Stokes equations

    Get PDF
    Two-dimensional compressible Reactive Navier-Stokes numerical simulations of intrinsic planar, premixed flame instabilities are performed. The initial growth of a sinusoidally perturbed planar flame is first compared with the predictions of a recent exact linear stability analysis, and it is shown the analysis provides a necessary but not sufficient test problem for validating numerical schemes intended for flame simulations. The long-time nonlinear evolution up to the final nonlinear stationary cellular flame is then examined for numerical domains of increasing width. It is shown that for routinely computationally affordable domain widths, the evolution and final state is, in general, entirely dependent on the width of the domain and choice of numerical boundary conditions. It is also shown that the linear analysis has no relevance to the final nonlinear cell size. When both hydrodynamic and thermal-diffusive effects are important, the evolution consists of a number of symmetry breaking cell splitting and re-merging processes which results in a stationary state of a single very asymmetric cell in the domain, a flame shape which is not predicted by weakly nonlinear evolution equations. Resolution studies are performed and it is found that lower numerical resolutions, typical of those used in previous works, do not give even the qualitatively correct solution in wide domains. We also show that the long-time evolution, including whether or not a stationary state is ever achieved, depends on the choice of the numerical boundary conditions at the inflow and outflow boundaries, and on the numerical domain length and flame Mach number for the types of boundary conditions used in some previous works

    The influence of long- and short-term volcanic strain on aquifer pressure:a case study from Soufrière Hills Volcano, Montserrat (W.I.)

    Get PDF
    Aquifers are poroelastic bodies that respond to strain by changes in pore pressure. Crustal deformation due to volcanic processes induces pore pressure variations that are mirrored in well water levels. Here, we investigate water level changes in the Belham valley on Montserrat over the course of two years (2004-2006). Using finite element analysis, we simulate crustal deformation due to different volcanic strain sources and the dynamic poroelastic aquifer response. While some additional hydrological drivers cannot be excluded, we suggest that a poroelastic strain response of the aquifer system in the Belham valley is a possible explanation for the observed water level changes. According to our simulations, the shallow Belham aquifer responds to a steadily increasing sediment load due to repeated lahar sedimentation in the valley with rising aquifer pressures. A wholesale dome collapse in May 2006 on the other hand induced dilatational strain and thereby a short-term water level drop in a deeper-seated aquifer, which caused groundwater leakage from the Belham aquifer and thereby induced a delayed water level fall in the wells. The system thus responded to both gradual and rapid transient strain associated with the eruption of Soufrière Hills Volcano (Montserrat). This case study gives field evidence for theoretical predictions on volcanic drivers behind hydrological transients, demonstrating the potential of hydrological data for volcano monitoring. Interrogation of such data can provide valuable constraints on stress evolution in volcanic systems and therefore complement other monitoring systems. The presented models and inferred results are conceptually applicable to volcanic areas worldwide

    Division I College Athletes’ Self-Perception: Investigating the Impact of Race and Discrimination

    Get PDF
    Self-perception is the level of competency at which individuals evaluate themselves in certain areas or domains (Marsh & Shavelson, 1985). An individual’s self-perceptions contribute to their global self-worth and even predicts performance (Cuellar, 2014; Harter & Neemann, 2012). This study measures self-perception scores, as well as experiences with racial discrimination, of 306 NCAA Division I college athletes using the Self-Perception Profile for College Students (Harter & Neemann, 2012). Scores are compared across race. Findings suggest that White college athletes have significantly higher self-perception scores than college athletes of color - with recent discrimination (within the last year) as a significant predictor of multiple areas of self-perception. The implications of this study suggest that faculty and other campus stakeholders should pursue positive relationships with the college athletes they encounter. Positive relationships between college athletes and faculty may help raise college athlete self-perceptions, and in turn, performance in a variety of areas

    Linear stability of planar premixed flames: reactive Navier-Stokes equations with finite activation energy and arbitrary Lewis number

    Get PDF
    A numerical shooting method for performing linear stability analyses of travelling waves is described and applied to the problem of freely propagating planar premixed flames. Previous linear stability analyses of premixed flames either employ high activation temperature asymptotics or have been performed numerically with finite activation temperature, but either for unit Lewis numbers (which ignores thermal-diffusive effects) or in the limit of small heat release (which ignores hydrodynamic effects). In this paper the full reactive Navier-Stokes equations are used with arbitrary values of the parameters (activation temperature, Lewis number, heat of reaction, Prandtl number), for which both thermal-diffusive and hydrodynamic effects on the instability, and their interactions, are taken into account. Comparisons are made with previous asymptotic and numerical results. For Lewis numbers very close to or above unity, for which hydrodynamic effects caused by thermal expansion are the dominant destablizing mechanism, it is shown that slowly varying flame analyses give qualitatively good but quantitatively poor predictions, and also that the stability is insensitive to the activation temperature. However, for Lewis numbers sufficiently below unity for which thermal-diffusive effects play a major role, the stability of the flame becomes very sensitive to the activation temperature. Indeed, unphysically high activation temperatures are required for the high activation temperature analysis to give quantitatively good predictions at such low Lewis numbers. It is also shown that state-insensitive viscosity has a small destabilizing effect on the cellular instability at low Lewis numbers

    Superconducting Nb-film LC resonator

    Full text link
    Sputtered Nb thin-film LC resonators for low frequencies at 0.5 MHz have been fabricated and tested in the temperature range 0.05--1 K in magnetic fields up to 30 mT. Their Q value increases towards decreasing temperature as sqrt(T) and reaches 10^3 at 0.05 K. As a function of magnetic field Q is unstable and displays variations up to 50%, which are reproducible from one field sweep to the next. These instabilities are attributed to dielectric losses in the plasma deposited SiO_2 insulation layer, since the thin-film coil alone reaches a Q > 10^5 at 0.05 K.Comment: 6 pages, 7 figures, submitted to Review of Scientific Instrument
    • …
    corecore