1,190 research outputs found

    Wakefield-Induced Ionization injection in beam-driven plasma accelerators

    Full text link
    We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches [Martinez de la Ossa et al., Phys. Rev. Lett. 111, 245003 (2013)]. The electron-beam drivers must feature high-peak currents (Ib08.5 kAI_b^0\gtrsim 8.5~\mathrm{kA}) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance (kpσzkpϵn0.1k_p\sigma_z \sim k_p\epsilon_n \sim 0.1). In addition, we show that the amount of injected charge can be adjusted by tuning the concentration of the dopant gas species, which allows for controlled beam loading and leads to a reduction of the total energy spread of the witness beams. Electron bunches, produced in this way, fulfil the requirements to drive blowout regime plasma wakes at a higher density and to trigger WII injection in a second stage. This suggests a promising new concept of self-similar staging of WII injection in steps with increasing plasma density, giving rise to the potential of producing electron beams with unprecedented energy and brilliance from plasma-wakefield accelerators

    Discovering Valuable Items from Massive Data

    Full text link
    Suppose there is a large collection of items, each with an associated cost and an inherent utility that is revealed only once we commit to selecting it. Given a budget on the cumulative cost of the selected items, how can we pick a subset of maximal value? This task generalizes several important problems such as multi-arm bandits, active search and the knapsack problem. We present an algorithm, GP-Select, which utilizes prior knowledge about similarity be- tween items, expressed as a kernel function. GP-Select uses Gaussian process prediction to balance exploration (estimating the unknown value of items) and exploitation (selecting items of high value). We extend GP-Select to be able to discover sets that simultaneously have high utility and are diverse. Our preference for diversity can be specified as an arbitrary monotone submodular function that quantifies the diminishing returns obtained when selecting similar items. Furthermore, we exploit the structure of the model updates to achieve an order of magnitude (up to 40X) speedup in our experiments without resorting to approximations. We provide strong guarantees on the performance of GP-Select and apply it to three real-world case studies of industrial relevance: (1) Refreshing a repository of prices in a Global Distribution System for the travel industry, (2) Identifying diverse, binding-affine peptides in a vaccine de- sign task and (3) Maximizing clicks in a web-scale recommender system by recommending items to users

    Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors

    Full text link
    A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically-intense laser-solid interactions is described. The Monte Carlo techniques used to back-out the fast electron spectrum and laser energy absorbed into fast electrons are detailed. A relativistically-intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data was interpreted using the 3-spatial-dimension Monte Carlo code MCNPX (Pelowitz 2008), and the fast electron temperature found to be 125 keV

    How does tephra deposit thickness change over time? A calibration exercise based on the 1980 Mount St Helens tephra deposit

    Get PDF
    Tephra layers are frequently used to reconstruct past volcanic activity. Inferences made from tephra layers rely on the assumption that the preserved tephra layer is representative of the initial deposit. However, a great deal can happen to tephra after it is deposited; thus, tephra layer taphonomy is a crucial but poorly understood process. The overall goal of this research was to gain greater insight into the taphonomy of terrestrial tephra layers. We approached this by a) conducting a new survey of the tephra layer from the recent, well-studied eruption of Mount St Helens on May 18th, 1980 (MSH1980); b) modelling the tephra layer thickness using an objective mathematical technique and c) comparing our results with an equivalent model based on measurements taken immediately after the eruption. In this way, we aimed to quantify any losses and transformations that have occurred. During our study, we collected measurements of tephra layer thickness from 86 locations ranging from 600 km from the vent. Geochemical analysis was used to verify the identity of tephra of uncertain origin. Our results indicated that the extant tephra layer at undisturbed sites was representative of the original deposit: overall, preservation in these locations (in terms of thickness, stratigraphy and geochemistry) had been remarkably good. However, isopach maps generated from our measurements diverged from isopachs derived from the original survey data. Furthermore, our estimate of the quantity of tephra produced during eruption greatly exceeded previous estimates of the fallout volume. In this case, inaccuracies in the modelled fallout arose from issues of sampling strategy, rather than taphonomy. Our results demonstrate the sensitivity of volcanological reconstructions to measurement location, and the great importance of reliably measured low/zero values in reconstructing tephra deposits

    Oblique Confinement and Phase Transitions in Chern-Simons Gauge Theories

    Full text link
    We investigate non-perturbative features of a planar Chern-Simons gauge theory modeling the long distance physics of quantum Hall systems, including a finite gap M for excitations. By formulating the model on a lattice, we identify the relevant topological configurations and their interactions. For M bigger than a critical value, the model exhibits an oblique confinement phase, which we identify with Lauglin's incompressible quantum fluid. For M smaller than the critical value, we obtain a phase transition to a Coulomb phase or a confinement phase, depending on the value of the electromagnetic coupling.Comment: 8 pages, harvmac, DFUPG 91/94 and MPI-PhT/94-9

    Testimony at court: a randomised controlled trial investigating the art and science of persuading witnesses and victims to attend trial

    Get PDF
    The presence of civilian witnesses and victims in court is central to the effective operation of the criminal justice system. However, there is evidence of significant non-attendance which can result in ineffective and cracked trials. To address this, West Midlands Police Witness Care Unit and the Behavioural Insights Team designed an intervention using behavioural insight principles consisting of (1) a new conversation guide for Witness Care Officers (WCOs); (2) a redesigned ‘Warning Letter’ confirming details of the proceedings; and (3) a new reminder call and SMS. The impact of the new approach was evaluated through a randomised controlled trial in which 36 WCOs were randomly assigned to either “business as usual” (control) or treatment. The evaluation used an intention-to-treat design with implementation guided and encouraged at several points. Subgroup analysis was undertaken to explore whether differential effects were seen for domestic violence cases or between those that were victims and witnesses. Results indicated that the treatment approach was directionally positive in all cases, but that the increase in attendance was not statistically significant. This is in line with findings of other similar research in this area

    Analysis of Geometrical Relationships and Friction Losses in Small-Diameter Lay-Flat Polyethylene Pipes

    Full text link
    [EN] The use of lay-flat polyethylene pipes to irrigate horticultural crops has been receiving widespread attention in the last decade, due to the significant improvements in their hydraulic performance, their potentially high application efficiency, and their limited installation costs. However, even if hydraulic design procedures for conventional microirrigation systems are fairly well established, there is still the need to know how different pipe-wall thicknesses of lay-flat pipes can affect the pipe geometry under different operating pressures as well as the related consequences on friction losses. This paper, after comparing two different procedures (caliper and photographic) to assess the geometry of lay-flat polyethylene pipes under different operating pressures, analyzes the friction losses per unit of pipe length, J, in order to identify and to assess a procedure for their evaluation. Hydrostatic tests, initially carried out on pipes with wall thicknesses of 6, 8, and 10 thousandth of an inch (mil), evidenced that the pipe dimensions measured with both methods are quite similar, despite the generally higher standard deviations characterizing caliper measurements when compared to photographic method. Tests allowed to verify that most of the changes in pipe dimensions occur within a range of pressure from 0 kPa to about 30 kPa, with pipe horizontal width and vertical height quite similar at higher pressures and pipes have a tendency to become circular. Additionally, due to the elasticity of the material, over a certain limit of water pressure, both the pipe dimensions tend to rise, with a trend depending on pipe thickness. According to the experimental data, the relationships between pipe effective diameter and water pressure were then determined for the three considered pipes. Moreover, based on measured friction losses and pipe effective diameters, it was confirmed that the relationship between the Darcy-Weisbach friction factor, f, and the Reynolds number, R, can be described by a power equation in which, by assuming a value of -0.25 for the exponent, it results a coefficient c = 0.285, lower than the theoretical. For the three investigated pipes the errors associated to estimated J were finally evaluated by considering (1) the experimental relationships between friction factor and Reynolds number as well as between pipe diameter and operating pressure (Case A); (2) the same value of c, but pipe effective diameters of 16.20, 16.10, and 15.85 mm corresponding to p = p(lim) (Case B); (3) the standard procedure, with a value of c = 0.302 and the pipe diameter equal to 16.10 mm, as suggested by the manufacturer. The results evidenced that suitable estimations of J need to account for the variations of the pipe effective diameter with water pressure. On the other hand, incorrect values of pipe diameter combined with inexact values of the friction factor generate inaccurate estimations of friction losses, with unavoidable consequences in pipe design. (C) 2015 American Society of Civil Engineers.The research was cofinanced by Universita di Palermo (FFR 2011) and Ministero dell'Istruzione, dell'Universita e della Ricerca (PRIN 2010). All the authors setup the research and discussed the results. V. Alagna and D. Autovino carried out the experimental measurements and G. Provenzano wrote the paper. A special thank to the Committee for International Relations Office (CORI) of University of Palermo to support the research cooperation with the University of Valencia.Provenzano, G.; Alagna, V.; Autovino, D.; Manzano Juarez, J.; Rallo, G. (2016). Analysis of Geometrical Relationships and Friction Losses in Small-Diameter Lay-Flat Polyethylene Pipes. Journal of Irrigation and Drainage Engineering. 142(2):1-9. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000958S19142

    Randomised controlled trial of an augmented exercise referral scheme using web-based behavioural support for inactive adults with chronic health conditions: the e-coachER trial.

    Get PDF
    OBJECTIVE: To determine whether adding web-based support (e-coachER) to an exercise referral scheme (ERS) increases objectively assessed physical activity (PA). DESIGN: Multicentre trial with participants randomised to usual ERS alone (control) or usual ERS plus e-coachER (intervention). SETTING: Primary care and ERS in three UK sites from 2015 to 2018. PARTICIPANTS: 450 inactive ERS referees with chronic health conditions. INTERVENTIONS: Participants received a pedometer, PA recording sheets and a user guide for the web-based support. e-coachER interactively encouraged the use of the ERS and other PA options. MAIN OUTCOME MEASURES: Primary and key secondary outcomes were: objective moderate-to-vigorous PA (MVPA) minutes (in ≥10 min bouts and without bouts), respectively, after 12 months. Secondary outcomes were: other accelerometer-derived and self-reported PA measures, ERS attendance, EQ-5D-5L, Hospital Anxiety and Depression Scale and beliefs about PA. All outcomes were collected at baseline, 4 and 12 months. Primary analysis was an intention to treat comparison between intervention and control arms at 12-month follow-up. RESULTS: There was no significant effect of the intervention on weekly MVPA at 12 months between the groups recorded in ≥10 min bouts (mean difference 11.8 min of MVPA, 95% CI: -2.1 to 26.0; p=0.10) or without bouts (mean difference 13.7 min of MVPA, 95% CI: -26.8 to 54.2; p=0.51) for 232 participants with usable data. There was no difference in the primary or secondary PA outcomes at 4 or 12 months. CONCLUSION: Augmenting ERS referrals with web-based behavioural support had only a weak, non-significant effect on MVPA. TRIAL REGISTRATION NUMBER: ISRCTN15644451

    Laser-driven electron source suitable for single-shot Gy-scale irradiation of biological cells at dose-rates exceeding 101010^{10} Gy/s

    Full text link
    We report on the first systematic characterisation of a tuneable laser-driven electron source capable of delivering Gy-scale doses in a duration of 10 - 20 ps, thus reaching unprecedented dose rates in the range of 1010101210^{10} - 10^{12} Gy/s. Detailed characterisation of the source indicates, in agreement with Monte-Carlo simulations, single-shot delivery of multi-Gy doses per pulse over cm-scale areas, with a high degree of spatial uniformity. The results reported here confirm that a laser-driven source of this kind can be used for systematic studies of the response of biological cells to picosecond-scale radiation at ultra-high dose rates.Comment: submitted for publicatio
    corecore