3,715 research outputs found
The Value of Literacy Practices
The concepts of literacy events and practices have received considerable attention in educational research and policy. In comparison, the question of value, that is, âwhich literacy practices do people most value?â has been neglected. With the current trend of cross-cultural adult literacy assessment, it is increasingly important to recognise locally valued literacy practices. In this paper we argue that measuring preferences and weighting of literacy practices provides an empirical and democratic basis for decisions in literacy assessment and curriculum development and could inform rapid educational adaptation to changes in the literacy environment. The paper examines the methodological basis for investigating literacy values and its potential to inform cross-cultural literacy assessments. The argument is illustrated with primary data from Mozambique. The correlation between individual values and respondentsâ socio-economic and demographic characteristics is explored
Computationally designed libraries of fluorescent proteins evaluated by preservation and diversity of function
To determine which of seven library design algorithms best introduces new protein function without destroying it altogether, seven combinatorial libraries of green fluorescent protein variants were designed and synthesized. Each was evaluated by distributions of emission intensity and color compiled from measurements made in vivo. Additional comparisons were made with a library constructed by error-prone PCR. Among the designed libraries, fluorescent function was preserved for the greatest fraction of samples in a library designed by using a structure-based computational method developed and described here. A trend was observed toward greater diversity of color in designed libraries that better preserved fluorescence. Contrary to trends observed among libraries constructed by error-prone PCR, preservation of function was observed to increase with a library's average mutation level among the four libraries designed with structure-based computational methods
Literacy under and over the desk: oppositions and heterogeneity
In this paper I argue that a dominant theme in New Literacy Studies research, the differences between literacy practices inside and outside school, has sometimes involved conflating âhome literacyâ with private, unregulated âvernacular literacyâ, and the use of an idealised abstract notion of schooled literacy to represent studentsâ actual everyday experience in the classroom. Drawing on linguistic ethnographic research in two British primary schools, I use examples of âunofficialâ and âofficialâ literacy activities from 10-11 year-olds to show that a wide range of different forms of literacy can be found in the classroom and I argue that the division between âvernacularâ and âschooledâ is not as clear-cut as is sometimes assumed. My analysis of childrenâs literacy activities suggests that, on the one hand, unofficial activities orientate towards and index official knowledges and the macro-level institutional order and, on the other hand, official activities are interpenetrated with informal practices and procedures. I also comment on some implications of using the New Literacy Studies âevents and practicesâ conceptual framework for understanding what is going on in classrooms
Flow convergence routing hypothesis for pool-riffle maintenance in alluvial rivers
The velocity reversal hypothesis is commonly cited as a mechanism for the maintenance of pool-riffle morphology. Although this hypothesis is based on the magnitude of mean flow parameters, recent studies have suggested that mean parameters are not sufficient to explain the dominant processes in many pool-riffle sequences. In this study, two- and three-dimensional models are applied to simulate flow in the pool-riffle sequence on Dry Creek, California, where the velocity reversal hypothesis was first proposed. These simulations provide an opportunity to evaluate the hydrodynamics underlying the observed reversals in near-bed and section-averaged velocity and are used to investigate the influence of secondary currents, the advection of momentum, and cross-stream flow variability. The simulation results support the occurrence of a reversal in mean velocity and mean shear stress with increasing discharge. However, the results indicate that the effects of flow convergence due to an upstream constriction and the routing of flow through the system are more significant in influencing pool-riffle morphology than the occurrence of a mean velocity reversal. The hypothesis of flow convergence routing is introduced as a more meaningful explanation of the mechanisms acting to maintain pool-riffle morphology
Improving adaptive bagging methods for evolving data streams
We propose two new improvements for bagging methods on evolving data streams. Recently, two new variants of Bagging were proposed: ADWIN Bagging and Adaptive-Size Hoeffding Tree (ASHT) Bagging. ASHT Bagging uses trees of different sizes, and ADWIN Bagging uses ADWIN as a change detector to decide when to discard underperforming ensemble members. We improve ADWIN Bagging using Hoeffding Adaptive Trees, trees that can adaptively learn from data streams that change over time. To speed up the time for adapting to change of Adaptive-Size Hoeffding Tree (ASHT) Bagging, we add an error change detector for each classifier. We test our improvements by performing an evaluation study on synthetic and real-world datasets comprising up to ten million examples
Technology: A Tool for Knowledge Construction in a Reggio Emilia Inspired Teacher Education Program
This article describes the application of technology in Reggio Emilia inspired early childhood and teacher education programs at the University of Michigan-Dearborn. We have found that technology used in a Reggio inspired program can be a valuable tool for the representation and organization of ideas, collaboration among a specific learning community, visualization and reflection on thinking, and communication of learning to the broader community. Our experiences and reflections suggest that the integration of technology in a Reggio inspired curriculum supports knowledge construction of both children and student teachers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42650/1/10643_2004_Article_477971.pd
Magnetic Field scaling of Relaxation curves in Small Particle Systems
We study the effects of the magnetic field on the relaxation of the
magnetization of small monodomain non-interacting particles with random
orientations and distribution of anisotropy constants. Starting from a master
equation, we build up an expression for the time dependence of the
magnetization which takes into account thermal activation only over barriers
separating energy minima, which, in our model, can be computed exactly from
analytical expressions. Numerical calculations of the relaxation curves for
different distribution widths, and under different magnetic fields H and
temperatures T, have been performed. We show how a \svar scaling of the
curves, at different T and for a given H, can be carried out after proper
normalization of the data to the equilibrium magnetization. The resulting
master curves are shown to be closely related to what we call effective energy
barrier distributions, which, in our model, can be computed exactly from
analytical expressions. The concept of effective distribution serves us as a
basis for finding a scaling variable to scale relaxation curves at different H
and a given T, thus showing that the field dependence of energy barriers can be
also extracted from relaxation measurements.Comment: 12 pages, 9 figures, submitted to Phys. Rev.
Test of mode coupling theory for a supercooled liquid of diatomic molecules.I. Translational degrees of freedom
A molecular dynamics simulation is performed for a supercooled liquid of
rigid diatomic molecules. The time-dependent self and collective density
correlators of the molecular centers of mass are determined and compared with
the predictions of the ideal mode coupling theory (MCT) for simple liquids.
This is done in real as well as in momentum space. One of the main results is
the existence of a unique transition temperature T_c, where the dynamics
crosses over from an ergodic to a quasi-nonergodic behavior. The value for T_c
agrees with that found earlier for the orientational dynamics within the error
bars. In the beta- regime of MCT the factorization of space- and time
dependence is satisfactorily fulfilled for both types of correlations. The
first scaling law of ideal MCT holds in the von Schweidler regime, only, since
the validity of the critical law can not be confirmed, due to a strong
interference with the microscopic dynamics. In this first scaling regime a
consistent description within ideal MCT emerges only, if the next order
correction to the asymptotic law is taken into account. This correction is
almost negligible for q=q_max, the position of the main peak in the static
structure factor S(q), but becomes important for q=q_min, the position of its
first minimum. The second scaling law, i.e. the time-temperature superposition
principle, holds reasonably well for the self and collective density
correlators and different values for q. The alpha-relaxation times tau_q^(s)
and tau_q follow a power law in T-T_c over 2 -- 3 decades. The corresponding
exponent gamma is weakly q-dependent and is around 2.55. This value is in
agreement with the one predicted by MCT from the value of the von Schweidler
exponent but at variance with the corresponding exponent gammaComment: 14 pages of RevTex, 19 figure
- âŠ