8 research outputs found

    Graded requirement for the zygotic terminal gene, tailless, in the brain and tail region of the Drosophila embryo

    Get PDF
    We have used hypomorphic and null tailless (tll) alleles to carry out a detailed analysis of the effects of the lack of tll gene activity on anterior and posterior regions of the embryo. The arrangement of tll alleles into a continuous series clarifies the relationship between the anterior and posterior functions of the tll gene and indicates that there is a graded sensitivity of anterior and posterior structures to a decrease in tll gene activity. With the deletion of both anterior and posterior pattern domains in tll null embryos, there is a poleward expansion of the remaining pattern. Using anti-horseradish peroxidase staining, we show that the formation of the embryonic brain requires tll. A phenotypic and genetic study of other pattern mutants places the tll gene within the hierarchy of maternal and zygotic genes required for the formation of the normal body pattern. Analysis of mutants doubly deficient in tll and maternal terminal genes is consistent with the idea that these genes act together in a common pathway to establish the domains at opposite ends of the embryo. We propose that tll establishes anterior and posterior subdomains (acron and tail regions, respectively) within the larger pattern regions affected by the maternal terminal genes

    Toward a loss of functional diversity in stream fish assemblages under climate change

    Get PDF
    The assessment of climate change impacts on biodiversity has so far been biased toward the taxonomic identification of the species likely either to benefit from climate modifications or to experience overall declines. There have still been few studies intended to correlate the characteristics of species to their sensitivity to climate change, even though it is now recognized that functional trait-based approaches are promising tools for addressing challenges related to global changes. In this study, two functional indices (originality and uniqueness) were first measured for 35 fish species occurring in French streams. They were then combined to projections of range shifts in response to climate change derived from species distribution models. We set out to investigate: (1) the relationship between the degrees of originality and uniqueness of fish species, and their projected response to future climate change; and (2) the consequences of individual responses of species for the functional diversity of fish assemblages. After accounting for phylogenetic relatedness among species, we have demonstrated that the two indices used measure two complementary facets of the position of fish species in a functional space. We have also rejected the hypothesis that the most original and/or less redundant species would necessarily experience the greatest declines in habitat suitability as a result of climate change. However, individual species range shifts could lead simultaneously both to a severe decline in the functional diversity of fish assemblages, and to an increase in the functional similarity among assemblages, supporting the hypothesis that disturbance favors communities with combination of common traits and biotic homogenization as well. Our findings therefore emphasize the importance of going beyond the simple taxonomic description of diversity to provide a better assessment of the likely future effects of environmental changes on biodiversity, thus helping to design more effective conservation and management measures

    Reciprocal effects of hyper- and hypoactivity mutations in the Drosophila pattern gene torso

    No full text
    In Drosophila, five "terminal" polarity genes must be active in females in order for them to produce embryos with normal anterior and posterior ends. Hypoactivity mutations in one such gene, torso, result in the loss of the most posterior domain of fushi tarazu expression and the terminal cuticular structures. In contrast, a torso hyperactivity mutation causes the loss of central fushi tarazu expression and central cuticular structures. Cytoplasmic leakage, transplantation, and temperature-shift experiments suggest that the latter effect is caused by abnormal persistence of the torso product in the central region of the embryo during early development. Thus, the amount and timing of torso activity is key to distinguishing the central and terminal regions of the embryo. Mutations in the tailless terminal gene act as dominant maternal suppressors of the hyperactive torso allele, indicating that the torso product acts through, or in concert with, the tailless product

    B. Sprachwissenschaft.

    No full text

    B. Sprachwissenschaft.

    No full text

    8. Literaturverzeichnis

    No full text
    corecore