548 research outputs found

    Ancient Bonds, Contemporary Powers: Investigating the Causes of Center/Periphery Conflict in the Russian Federation

    Get PDF
    What are the real causes of conflict between the federal regions and central authority in the Russian Federation? Why is it that some regions are compelled to act assertively towards Moscow, while others are not? These questions are relevant for any actor concerned with Russian affairs; moreover, they represent a critical debate for those who hope to bring aid to Russia’s struggling regional populations. This research furthers the debate through a test of the two major schools of ethno-federal thought: primordialism and bargaining theory. The study (1) identifies relevant variables, (2) constructs indices to represent each of the theories, and (3) tests those indices for correlation with regional aggression. This research shows that characteristics suggested by both primordialism and bargaining theory exert influence on regional aggression; however, it also finds that bargaining theory more accurately explains the behavior of Russian regions. In the end, this study concludes that ethnic differences, per se, do not lead to center/periphery conflict in the Russian Federation

    Of Minorities, Markets and Mongols: Re-imagining the Relationship Between Ethnicity and Rationality in Russian Center/Periphery Conflict

    Get PDF
    What causes regions of the Russian Federation to opt for conflict with the central authority? Why do some regions legitimate their conflict with Moscow in overtly ethnic tones, while others do not? In attempting to answer these questions, this research responds to the need for a reconfigured understanding of federalism and ethnicity in modern society; more specifically, it answers several lingering questions from previous investigations of primordial and rational choice theories. This research concludes that the likelihood of future conflict with Moscow can, in fact, be broken down systematically and predicted. In support of its arguments, the study (1) suggests a two-pronged method of regional analysis that captures primordial and rational explanations of center/periphery conflict, (2) demonstrates the accuracy of a model that simulates this analysis on the macro-level, and (3) tests the suggested theory on the micro level through an in-depth study of the critical case of Tatarstan. In the end,this investigation finds that the regions of Russia\u27s ethnic federation will pursue their set preference for autonomy whenever certain variables--ethnic or otherwise lower the risks associated with center/periphery conflict

    Successful Stepwise Development of Patient Research Partnership: 14 years’ experience of actions and consequences in Outcome Measures in Rheumatology (OMERACT)

    Get PDF
    There is increasing interest in making patient participation an integral component of medical research. However, practical guidance on optimizing this engagement in healthcare is scarce. Since 2002, patient involvement has been one of the key features of the Outcome Measures in Rheumatology (OMERACT) international consensus effort. Based on a review of cumulative data from qualitative studies and internal surveys among OMERACT participants, we explored the potential benefits and challenges of involving patient research partners in conferences and working group activities. We supplemented our review with personal experiences and reflections regarding patient participation in the OMERACT process. We found that between 2002 and 2016, 67 patients have attended OMERACT conferences, of whom 28 had sustained involvement; many other patients contributed to OMERACT working groups. Their participation provided face validity to the OMERACT process and expanded the research agenda. Essential facilitators have been the financial commitment to guarantee sustainable involvement of patients at these conferences, procedures for recruitment, selection and support, and dedicated time allocated in the program for patient issues. Current challenges include the representativeness of the patient panel, risk of pseudo-professionalization, and disparity in patients’ and researchers’ perception of involvement. In conclusion, OMERACT has embedded long-term patient involvement in the consensus-building process on the measurement of core health outcomes. This integrative process continues to evolve iteratively. We believe that the practical points raised here can improve participatory research implementation

    The Origin and Initial Rise of Pelagic Cephalopods in the Ordovician

    Get PDF
    BACKGROUND: During the Ordovician the global diversity increased dramatically at family, genus and species levels. Partially the diversification is explained by an increased nutrient, and phytoplankton availability in the open water. Cephalopods are among the top predators of today's open oceans. Their Ordovician occurrences, diversity evolution and abundance pattern potentially provides information on the evolution of the pelagic food chain. METHODOLOGY/PRINCIPAL FINDINGS: We reconstructed the cephalopod departure from originally exclusively neritic habitats into the pelagic zone by the compilation of occurrence data in offshore paleoenvironments from the Paleobiology Database, and from own data, by evidence of the functional morphology, and the taphonomy of selected cephalopod faunas. The occurrence data show, that cephalopod associations in offshore depositional settings and black shales are characterized by a specific composition, often dominated by orthocerids and lituitids. The siphuncle and conch form of these cephalopods indicate a dominant lifestyle as pelagic, vertical migrants. The frequency distribution of conch sizes and the pattern of epibionts indicate an autochthonous origin of the majority of orthocerid and lituitid shells. The consistent concentration of these cephalopods in deep subtidal sediments, starting from the middle Tremadocian indicates the occupation of the pelagic zone early in the Early Ordovician and a subsequent diversification which peaked during the Darriwilian. CONCLUSIONS/SIGNIFICANCE: The exploitation of the pelagic realm started synchronously in several independent invertebrate clades during the latest Cambrian to Middle Ordovician. The initial rise and diversification of pelagic cephalopods during the Early and Middle Ordovician indicates the establishment of a pelagic food chain sustainable enough for the development of a diverse fauna of large predators. The earliest pelagic cephalopods were slowly swimming vertical migrants. The appearance and early diversification of pelagic cephalopods is interpreted as a consequence of the increased food availability in the open water since the latest Cambrian

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Impact of fast ions on density peaking in JET : fluid and gyrokinetic modeling

    Get PDF
    The effect of fast ions on turbulent particle transport, driven by ion temperature gradient (ITG)/trapped electron mode turbulence, is studied. Two neutral beam injection (NBI) heated JET discharges in different regimes are analyzed at the radial position rho(t) = 0.6, one of them an L-mode and the other one an H-mode discharge. Results obtained from the computationally efficient fluid model EDWM and the gyro-fluid model TGLF are compared to linear and nonlinear gyrokinetic GENE simulations as well as the experimentally obtained density peaking. In these models, the fast ions are treated as a dynamic species with a Maxwellian background distribution. The dependence of the zero particle flux density gradient (peaking factor) on fast ion density, temperature and corresponding gradients, is investigated. The simulations show that the inclusion of a fast ion species has a stabilizing influence on the ITG mode and reduces the peaking of the main ion and electron density profiles in the absence of sources. The models mostly reproduce the experimentally obtained density peaking for the L-mode discharge whereas the H-mode density peaking is significantly underpredicted, indicating the importance of the NBI particle source for the H-mode density profile

    Impact of fast ions on density peaking in JET: fluid and gyrokinetic modeling

    Get PDF
    The effect of fast ions on turbulent particle transport, driven by ion temperature gradient (ITG)/ trapped electron mode turbulence, is studied. Two neutral beam injection (NBI) heated JET discharges in different regimes are analyzed at the radial position ρt_{t}=0.6, one of them an L-mode and the other one an H-mode discharge. Results obtained from the computationally efficient fluid model EDWM and the gyro-fluid model TGLF are compared to linear and nonlinear gyrokinetic GENE simulations as well as the experimentally obtained density peaking. In these models, the fast ions are treated as a dynamic species with a Maxwellian background distribution. The dependence of the zero particle flux density gradient (peaking factor) on fast ion density, temperature and corresponding gradients, is investigated. The simulations show that the inclusion of a fast ion species has a stabilizing influence on the ITG mode and reduces the peaking of the main ion and electron density profiles in the absence of sources. The models mostly reproduce the experimentally obtained density peaking for the L-mode discharge whereas the H-mode density peaking is significantly underpredicted, indicating the importance of the NBI particle source for the H-mode density profile
    • 

    corecore