139 research outputs found
Momentum Regularity and Stability of the Relativistic Vlasov-Maxwell-Boltzmann System
In the study of solutions to the relativistic Boltzmann equation, their
regularity with respect to the momentum variables has been an outstanding
question, even local in time, due to the initially unexpected growth in the
post-collisional momentum variables which was discovered in 1991 by Glassey &
Strauss \cite{MR1105532}. We establish momentum regularity within energy spaces
via a new splitting technique and interplay between the Glassey-Strauss frame
and the center of mass frame of the relativistic collision operator. In a
periodic box, these new momentum regularity estimates lead to a proof of global
existence of classical solutions to the two-species relativistic
Vlasov-Boltzmann-Maxwell system for charged particles near Maxwellian with hard
ball interaction.Comment: 23 pages; made revisions which were suggested by the referee; to
appear in Comm. Math. Phy
Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials
In this paper it is shown that unique solutions to the relativistic Boltzmann
equation exist for all time and decay with any polynomial rate towards their
steady state relativistic Maxwellian provided that the initial data starts out
sufficiently close in . If the initial data are continuous then
so is the corresponding solution. We work in the case of a spatially periodic
box. Conditions on the collision kernel are generic in the sense of
(Dudy{\'n}ski and Ekiel-Je{\.z}ewska, Comm. Math. Phys., 1988); this resolves
the open question of global existence for the soft potentials.Comment: 64 page
Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil
Sequences of nodD, a gene found only in rhizobia, were amplified from total community DNA isolated from a pasture soil. The polymerase chain reaction (PCR) primers used, Y5 and Y6, match nodD from Rhizobium leguminosarum biovar trifolii, R. leguminosarum biovar viciae and Sinorhizobium meliloti. The PCR product was cloned and yielded 68 clones that were identified by restriction pattern as derived from biovar trifolii [11 restriction fragment length polymorphism (RFLP) types] and 15 clones identified as viciae (seven RFLP types). These identifications were confirmed by sequencing. There were no clones related to S. meliloti nodD. For comparison, 122 strains were isolated from nodules of white clover (Trifolium repens) growing at the field site, and 134 from nodules on trap plants of T. repens inoculated with the soil. The nodule isolates were of four nodD RFLP types, with 77% being of a single type. All four of these patterns were also found among the clones from soil DNA, and the same type was the most abundant, although it made up only 34% of the trifolii-like clones. We conclude that clover selects specific genotypes from the available soil population, and that R. leguminosarum biovar trifolii was approximately five times more abundant than biovar viciae in this pasture soil, whereas S. meliloti was rare
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector
The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg
array of high purity germanium detectors housed in an ultra-low background
shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA
DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while
demonstrating the feasibility of a tonne-scale experiment. It may also carry
out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that
customized Broad Energy Germanium (BEGe) detectors produced by Canberra have
several desirable features for a neutrinoless double-beta decay experiment,
including low electronic noise, excellent pulse shape analysis capabilities,
and simple fabrication. We have deployed a customized BEGe, the MAJORANA
Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and
shield at the Kimballton Underground Research Facility in Virginia. This paper
will focus on the detector characteristics and measurements that can be
performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure
Mindfulness-based stress reduction as supportive therapy in cancer care: systematic review
Aim: This paper reports a systematic review and critical appraisal of the evidence on the effectiveness of Mindfulness-Based Stress Reduction for cancer supportive
care.
Background: The experience of cancer can have a negative impact on both psychological and physical health and on quality of life. Mindfulness-Based Stress Reduction is a therapy package that has been used with patients with a variety of conditions. In order to draw conclusions on its effectiveness for cancer patients, the evidence requires systematic assessment.
Methods: A comprehensive search of major biomedical and specialist complementary medicine databases was conducted. Additionally, efforts were made to identify unpublished and ongoing research. Relevant research was categorized by study type and appraised according to study design. Clinical commentaries were obtained for each study and included in the review.
Results: Three randomized controlled clinical trials and seven uncontrolled clinical trials were found. A lack of relevant qualitative research studies was identified.
Studies report positive results, including improvements in mood, sleep quality and reductions in stress. A dose-response effect has been observed between practice of
Mindfulness-Based Stress Reduction and improved outcome. A number of methodological limitations were identified. Modifications to the traditional Mindfulness-Based Stress Reduction programme make comparison between studies difficult and a lack of controlled studies precludes any firm conclusion on efficacy.
Conclusion: Mindfulness-Based Stress Reduction has potential as a clinically valuable self-administered intervention for cancer patients. Further research into its efficacy, feasibility and safety for cancer patients in the nursing context is recommended
Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors
We have performed a search for bursts of gravitational waves associated with the very bright gamma ray burst GRB030329, using the two detectors at the LIGO Hanford Observatory. Our search covered the most sensitive frequency range of the LIGO detectors (approximately 80 - 2048 Hz), and we specifically targeted signals shorter than 150ms. Our search algorithm looks for excess correlated power between the two interferometers and thus makes minimal assumptions about the gravitational waveform. We observed no candidates with gravitational-wave signal strength larger than a predetermined threshold. We report frequency-dependent upper limits on the strength of the gravitational waves associated with GRB030329. Near the most sensitive frequency region, around 250Hz, our root-sum-square (RSS) gravitational-wave strain sensitivity for optimally polarized bursts was better than hRSS 6×10-21Hz-1/2. Our result is comparable to the best published results searching for association between gravitational waves and gamma ray bursts. © 2005 The American Physical Society
Limits on gravitational-wave emission from selected pulsars using LIGO data
We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10-24. These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10-5 for the four closest pulsars. © 2005 The American Physical Society
Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube
The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by Antares, within ±500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2×1051-2×1054 erg. © 2017 American Physical Society
- …
