71 research outputs found

    NOW: Orchestrating services in a nomadic network using a dedicated workflow language

    Get PDF
    AbstractOrchestrating services in nomadic or mobile ad hoc networks is not without a challenge, since these environments are built upon volatile connections. Services residing on mobile devices are exposed to (temporary) network failures, which must be considered the rule rather than the exception. This paper proposes a dedicated workflow language built on top of an ambient-oriented programming language that supports dynamic service discovery and communication primitives resilient to network failures. The proposed workflow language, NOW, has support for high level workflow abstractions for control flow, rich network and service failure detection, and failure handling through compensating actions, and dynamic data flow between the services in the environment. By adding this extra layer of abstraction, the application programmer is offered a flexible way to develop applications for nomadic networks

    Can re-entrance be observed in force induced transitions?

    Full text link
    A large conformational change in the reaction co-ordinate and the role of the solvent in the formation of base-pairing are combined to settle a long standing issue {\it i.e.} prediction of re-entrance in the force induced transition of DNA. A direct way to observe the re-entrance, i.e a strand goes to the closed state from the open state and again to the open state with temperature, appears difficult to be achieved in the laboratory. An experimental protocol (in direct way) in the constant force ensemble is being proposed for the first time that will enable the observation of the re-entrance behavior in the force-temperature plane. Our exact results for small oligonucleotide that forms a hairpin structure provide the evidence that re-entrance can be observed.Comment: 12 pages and 5 figures (RevTex4). Accepted in Europhys Lett. (2009

    Quasi-exactly solvable cases of the N-dimensional symmetric quartic anharmonic oscillator

    Get PDF
    The O(N) invariant quartic anharmonic oscillator is shown to be exactly solvable if the interaction parameter satisfies special conditions. The problem is directly related to that of a quantum double well anharmonic oscillator in an external field. A finite dimensional matrix equation for the problem is constructed explicitly, along with analytical expressions for some excited states in the system. The corresponding Niven equations for determining the polynomial solutions for the problem are given.Comment: 7 pages, RevTeX4. A discussion on the N=1 case has been added with the boundary condition properly treate

    Assessment of Three Mitochondrial Genes (16S, Cytb, CO1) for Identifying Species in the Praomyini Tribe (Rodentia: Muridae)

    Get PDF
    The Praomyini tribe is one of the most diverse and abundant groups of Old World rodents. Several species are known to be involved in crop damage and in the epidemiology of several human and cattle diseases. Due to the existence of sibling species their identification is often problematic. Thus an easy, fast and accurate species identification tool is needed for non-systematicians to correctly identify Praomyini species. In this study we compare the usefulness of three genes (16S, Cytb, CO1) for identifying species of this tribe. A total of 426 specimens representing 40 species (sampled across their geographical range) were sequenced for the three genes. Nearly all of the species included in our study are monophyletic in the neighbour joining trees. The degree of intra-specific variability tends to be lower than the divergence between species, but no barcoding gap is detected. The success rate of the statistical methods of species identification is excellent (up to 99% or 100% for statistical supervised classification methods as the k-Nearest Neighbour or Random Forest). The 16S gene is 2.5 less variable than the Cytb and CO1 genes. As a result its discriminatory power is smaller. To sum up, our results suggest that using DNA markers for identifying species in the Praomyini tribe is a largely valid approach, and that the CO1 and Cytb genes are better DNA markers than the 16S gene. Our results confirm the usefulness of statistical methods such as the Random Forest and the 1-NN methods to assign a sequence to a species, even when the number of species is relatively large. Based on our NJ trees and the distribution of all intraspecific and interspecific pairwise nucleotide distances, we highlight the presence of several potentially new species within the Praomyini tribe that should be subject to corroboration assessments

    A gene-centric analysis of activated partial thromboplastin time and activated protein C resistance using the HumanCVD focused genotyping array.

    Get PDF
    Activated partial thromboplastin time (aPTT) is an important routine measure of intrinsic blood coagulation. Addition of activated protein C (APC) to the aPTT test to produce a ratio, provides one measure of APC resistance. The associations of some genetic mutations (eg, factor V Leiden) with these measures are established, but associations of other genetic variations remain to be established. The objective of this work was to test for association between genetic variants and blood coagulation using a high-density genotyping array. Genetic association with aPTT and APC resistance was analysed using a focused genotyping array that tests approximately 50 000 single-nucleotide polymorphisms (SNPs) in nearly 2000 cardiovascular candidate genes, including coagulation pathway genes. Analyses were conducted on 2544 European origin women from the British Women's Heart and Health Study. We confirm associations with aPTT at the coagulation factor XII (F12)/G protein-coupled receptor kinase 6 (GRK6) and kininogen 1 (KNG1)/histidine-rich glycoprotein (HRG) loci, and identify novel SNPs at the ABO locus and novel locus kallikrein B (KLKB1)/F11. In addition, we confirm association between APC resistance and factor V Leiden mutation, and identify novel SNP associations with APC resistance in the HRG and F5/solute carrier family 19 member 2 (SLC19A2) regions. In conclusion, variation at several genetic loci influences intrinsic blood coagulation as measured by both aPTT and APC resistance

    TOI-1338 : TESS' first transiting circumbinary planet

    Get PDF
    Funding: Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multilateral Agreement. W.F.W. and J.A.O.thank John Hood Jr. for his generous support of exoplanet research at SDSU. Support was also provided and acknowledged through NASA Habitable Worlds grant 80NSSC17K0741 and NASA XRP grant 80NSSC18K0519. This work is partly supported by NASA Habitable Worlds grant 80NSSC17K0741. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under grant No.(DGE-1746045). A.H.M.J.T. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 803193/BEBOP) and from a Leverhulme Trust Research Project grant No. RPG-2018-418. A.C. acknowledges support by CFisUC strategic project (UID/FIS/04564/2019).We report the detection of the first circumbinary planet (CBP) found by Transiting Exoplanet Survey Satellite (TESS). The target, a known eclipsing binary, was observed in sectors 1 through 12 at 30 minute cadence and in sectors 4 through 12 at 2 minute cadence. It consists of two stars with masses of 1.1 M⊙ and 0.3 M⊙ on a slightly eccentric (0.16), 14.6 day orbit, producing prominent primary eclipses and shallow secondary eclipses. The planet has a radius of ∼6.9 R⊕ and was observed to make three transits across the primary star of roughly equal depths (∼0.2%) but different durations—a common signature of transiting CBPs. Its orbit is nearly circular (e ≍ 0.09) with an orbital period of 95.2 days. The orbital planes of the binary and the planet are aligned to within ∼1°. To obtain a complete solution for the system, we combined the TESS photometry with existing ground-based radial-velocity observations in a numerical photometric-dynamical model. The system demonstrates the discovery potential of TESS for CBPs and provides further understanding of the formation and evolution of planets orbiting close binary stars.Publisher PDFPeer reviewe

    TOI-1338: TESS' First Transiting Circumbinary Planet

    Get PDF
    We report the detection of the first circumbinary planet (CBP) found by Transiting Exoplanet Survey Satellite (TESS). The target, a known eclipsing binary, was observed in sectors 1 through 12 at 30 minute cadence and in sectors 4 through 12 at 2 minute cadence. It consists of two stars with masses of 1.1 M o˙ and 0.3 M o˙ on a slightly eccentric (0.16), 14.6 day orbit, producing prominent primary eclipses and shallow secondary eclipses. The planet has a radius of ∼6.9 R ⊕ and was observed to make three transits across the primary star of roughly equal depths (∼0.2%) but different durations-a common signature of transiting CBPs. Its orbit is nearly circular (e ≈ 0.09) with an orbital period of 95.2 days. The orbital planes of the binary and the planet are aligned to within ∼1°. To obtain a complete solution for the system, we combined the TESS photometry with existing ground-based radial-velocity observations in a numerical photometric-dynamical model. The system demonstrates the discovery potential of TESS for CBPs and provides further understanding of the formation and evolution of planets orbiting close binary stars. © 2020. The American Astronomical Society. All rights reserved.Peer reviewe
    corecore