8 research outputs found

    Spectroscopic investigation and quantitation of polymorphism and crystallinity of pharmaceutical compounds

    Get PDF
    Spectroscopy is increasingly used to investigate and monitor the solid state forms of pharmaceutical materials and products. Spectroscopy's speed, non-destructive sampling, compatibility with fibre optics and safety also make it attractive for in-line monitoring. In this thesis, the spectroscopic techniques Fourier transform Raman spectroscopy, terahertz pulsed spectroscopy and second harmonic generation were used to characterise and quantify polymorphism and crystallinity of pharmaceutical compounds. Where possible, the multivariate analysis technique partial least squares was used for quantitative analysis. Fourier transform Raman spectroscopy detects polarisability changes mainly associated with molecular vibrations. Terahertz pulsed spectroscopy is a new spectroscopic technique that operates between the infrared and microwave regions of the electromagnetic spectrum and detects dipole moment changes mainly associated with crystalline phonon vibrations in the solid state. Second harmonic generation is a nonlinear optical phenomenon that depends on the dipole moment in crystals and crystal symmetry. Several materials capable of existing in different solid state forms were used. FT-Raman spectroscopy was able to differentiate carbamazepine forms I and III, enalapril maleate forms I and II and y-crystalline and amorphous indomethacin. Combined with partial least squares the technique could quantify binary mixtures of CBZ forms I and III with a limit of detection as low as 1 %, and mixtures of enalapril maleate with a limit of detection of as low as 2%. Terahertz pulsed spectroscopy obtained very different spectra for carbamazepine forms I and III, enalapril maleate forms I and II, y-crystalline and amorphous indomethacin, crystalline and supercooled thermotropic liquid crystalline fenoprofen calcium, three forms of lactose, and five forms of sulphathiazole. At present the modes in the spectra cannot be attributed to specific phonon modes. Quantitation of binary mixtures of different forms of a compound using partial least squares analysis usually resulted in a limit of detection of about 1 %. Second harmonic generation was used to quantify binary mixtures of different forms of enalapril maleate and lactose, as well as binary mixtures of enalapril maleate form II and polyvinylpyrrolidone. A quantitative relationship was present for each of the mixtures, however the limits of detection were usually above 10%. The high value is probably due to the machine being a prototype and univariate analysis associated with a single output variable. Future improvements to the apparatus and measurement parameters are likely to reduce the limits of detection. Ranitidine hydrochloride polymorphs could also be differentiated using second harmonic generation, however y-crystalline and amorphous indomethacin and forms I and III of carbamazepine could not. The methods used in this thesis were successfully used for qualitative and quantitative analysis of polymorphism and crystallinity of pharmaceutical compounds. TPS and SHG are useful additions to the range of experimental techniques that can be used to investigate and monitor properties of pharmaceutical solids

    Chemical analysis using 3D printed glass microfluidics

    Get PDF
    Additive manufacturing (3D printing) is a disruptive technology that is changing production systems globally. In addition, microfluidic devices are increasingly being used for chemical analysis and continuous production of chemicals. Printing of materials such as polymers and metals is already a reality, but additive manufacturing of glass for microfluidic systems has received minor attention. We characterize microfluidic devices (channel cross-section dimensions down to a scale of 100 mm) that have been produced by additive manufacturing of molten soda-lime glass in tens of minutes and report their mass spectrometric and Raman spectroscopic analysis examples. The functionality of a microfluidic glass microreactor is shown with online mass spectrometric analysis of linezolid synthesis. Additionally, the performance of a direct infusion device is demonstrated by mass spectrometric analysis of drugs. Finally, the excellent optical quality of the glass structures is demonstrated with in-line Raman spectroscopic measurements. Our results promise a bright future for additively manufactured glass microdevices in diverse fields of science.Peer reviewe

    Tissue-specific study across the stem reveals the chemistry and transcriptome dynamics of birch bark.

    Get PDF
    Tree bark is a highly specialized array of tissues that plays important roles in plant protection and development. Bark tissues develop from two lateral meristems; the phellogen (cork cambium) produces the outermost stem-environment barrier called the periderm, while the vascular cambium contributes with phloem tissues. Although bark is diverse in terms of tissues, functions and species, it remains understudied at higher resolution. We dissected the stem of silver birch (Betula pendula) into eight major tissue types, and characterized these by a combined transcriptomics and metabolomics approach. We further analyzed the varying bark types within the Betulaceae family. The two meristems had a distinct contribution to the stem transcriptomic landscape. Furthermore, inter- and intraspecies analyses illustrated the unique molecular profile of the phellem. We identified multiple tissue-specific metabolic pathways, such as the mevalonate/betulin biosynthesis pathway, that displayed differential evolution within the Betulaceae. A detailed analysis of suberin and betulin biosynthesis pathways identified a set of underlying regulators and highlighted the important role of local, small-scale gene duplication events in the evolution of metabolic pathways. This work reveals the transcriptome and metabolic diversity among bark tissues and provides insights to its development and evolution, as well as its biotechnological applications.peerReviewe

    Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial.

    Get PDF
    BACKGROUND: Staphylococcus aureus bacteraemia is a common cause of severe community-acquired and hospital-acquired infection worldwide. We tested the hypothesis that adjunctive rifampicin would reduce bacteriologically confirmed treatment failure or disease recurrence, or death, by enhancing early S aureus killing, sterilising infected foci and blood faster, and reducing risks of dissemination and metastatic infection. METHODS: In this multicentre, randomised, double-blind, placebo-controlled trial, adults (≥18 years) with S aureus bacteraemia who had received ≤96 h of active antibiotic therapy were recruited from 29 UK hospitals. Patients were randomly assigned (1:1) via a computer-generated sequential randomisation list to receive 2 weeks of adjunctive rifampicin (600 mg or 900 mg per day according to weight, oral or intravenous) versus identical placebo, together with standard antibiotic therapy. Randomisation was stratified by centre. Patients, investigators, and those caring for the patients were masked to group allocation. The primary outcome was time to bacteriologically confirmed treatment failure or disease recurrence, or death (all-cause), from randomisation to 12 weeks, adjudicated by an independent review committee masked to the treatment. Analysis was intention to treat. This trial was registered, number ISRCTN37666216, and is closed to new participants. FINDINGS: Between Dec 10, 2012, and Oct 25, 2016, 758 eligible participants were randomly assigned: 370 to rifampicin and 388 to placebo. 485 (64%) participants had community-acquired S aureus infections, and 132 (17%) had nosocomial S aureus infections. 47 (6%) had meticillin-resistant infections. 301 (40%) participants had an initial deep infection focus. Standard antibiotics were given for 29 (IQR 18-45) days; 619 (82%) participants received flucloxacillin. By week 12, 62 (17%) of participants who received rifampicin versus 71 (18%) who received placebo experienced treatment failure or disease recurrence, or died (absolute risk difference -1·4%, 95% CI -7·0 to 4·3; hazard ratio 0·96, 0·68-1·35, p=0·81). From randomisation to 12 weeks, no evidence of differences in serious (p=0·17) or grade 3-4 (p=0·36) adverse events were observed; however, 63 (17%) participants in the rifampicin group versus 39 (10%) in the placebo group had antibiotic or trial drug-modifying adverse events (p=0·004), and 24 (6%) versus six (2%) had drug interactions (p=0·0005). INTERPRETATION: Adjunctive rifampicin provided no overall benefit over standard antibiotic therapy in adults with S aureus bacteraemia. FUNDING: UK National Institute for Health Research Health Technology Assessment

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Spectroscopic investigation and quantitation of polymorphism and crystallinity of pharmaceutical compounds

    No full text
    Spectroscopy is increasingly used to investigate and monitor the solid state forms of pharmaceutical materials and products. Spectroscopy's speed, non-destructive sampling, compatibility with fibre optics and safety also make it attractive for in-line monitoring. In this thesis, the spectroscopic techniques Fourier transform Raman spectroscopy, terahertz pulsed spectroscopy and second harmonic generation were used to characterise and quantify polymorphism and crystallinity of pharmaceutical compounds. Where possible, the multivariate analysis technique partial least squares was used for quantitative analysis. Fourier transform Raman spectroscopy detects polarisability changes mainly associated with molecular vibrations. Terahertz pulsed spectroscopy is a new spectroscopic technique that operates between the infrared and microwave regions of the electromagnetic spectrum and detects dipole moment changes mainly associated with crystalline phonon vibrations in the solid state. Second harmonic generation is a nonlinear optical phenomenon that depends on the dipole moment in crystals and crystal symmetry. Several materials capable of existing in different solid state forms were used. FT-Raman spectroscopy was able to differentiate carbamazepine forms I and III, enalapril maleate forms I and II and y-crystalline and amorphous indomethacin. Combined with partial least squares the technique could quantify binary mixtures of CBZ forms I and III with a limit of detection as low as 1 %, and mixtures of enalapril maleate with a limit of detection of as low as 2%. Terahertz pulsed spectroscopy obtained very different spectra for carbamazepine forms I and III, enalapril maleate forms I and II, y-crystalline and amorphous indomethacin, crystalline and supercooled thermotropic liquid crystalline fenoprofen calcium, three forms of lactose, and five forms of sulphathiazole. At present the modes in the spectra cannot be attributed to specific phonon modes. Quantitation of binary mixtures of different forms of a compound using partial least squares analysis usually resulted in a limit of detection of about 1 %. Second harmonic generation was used to quantify binary mixtures of different forms of enalapril maleate and lactose, as well as binary mixtures of enalapril maleate form II and polyvinylpyrrolidone. A quantitative relationship was present for each of the mixtures, however the limits of detection were usually above 10%. The high value is probably due to the machine being a prototype and univariate analysis associated with a single output variable. Future improvements to the apparatus and measurement parameters are likely to reduce the limits of detection. Ranitidine hydrochloride polymorphs could also be differentiated using second harmonic generation, however y-crystalline and amorphous indomethacin and forms I and III of carbamazepine could not. The methods used in this thesis were successfully used for qualitative and quantitative analysis of polymorphism and crystallinity of pharmaceutical compounds. TPS and SHG are useful additions to the range of experimental techniques that can be used to investigate and monitor properties of pharmaceutical solids

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore