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Summary

� Tree bark is a highly specialized array of tissues that plays important roles in plant protection

and development. Bark tissues develop from two lateral meristems; the phellogen (cork cam-

bium) produces the outermost stem–environment barrier called the periderm, while the vas-

cular cambium contributes with phloem tissues. Although bark is diverse in terms of tissues,

functions and species, it remains understudied at higher resolution.
� We dissected the stem of silver birch (Betula pendula) into eight major tissue types, and

characterized these by a combined transcriptomics and metabolomics approach. We further

analyzed the varying bark types within the Betulaceae family.
� The two meristems had a distinct contribution to the stem transcriptomic landscape. Fur-

thermore, inter- and intraspecies analyses illustrated the unique molecular profile of the

phellem. We identified multiple tissue-specific metabolic pathways, such as the meval-

onate/betulin biosynthesis pathway, that displayed differential evolution within the Betu-

laceae. A detailed analysis of suberin and betulin biosynthesis pathways identified a set of

underlying regulators and highlighted the important role of local, small-scale gene duplication

events in the evolution of metabolic pathways.
� This work reveals the transcriptome and metabolic diversity among bark tissues and pro-

vides insights to its development and evolution, as well as its biotechnological applications.

Introduction

Tree bark displays a broad morphological diversity. Most
angiosperm and gymnosperm tree species typically have thick
and fissured barks (for example Quercus spp., Picea spp.), while*These author contributed equally to this work.
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smooth textures and various colors are found, for example, in
cherry trees (Prunus spp.) and birches (Betula spp.). Anatomi-
cally, bark consists of tissues outwards of the vascular cambium:
the phloem and periderm, the latter comprised of phelloderm,
phellogen and phellem. Bark tissues originate from stem sec-
ondary development, which in woody plants takes place in two
distinct lateral meristems. The first meristem, vascular cambium,
produces the phloem and xylem tissues. The second meristem,
phellogen (cork cambium), produces phellem towards outside of
the meristem, and phelloderm towards the inside. Phellem con-
stitutes the outermost barrier between the stem and the environ-
ment, while phelloderm is typically limited to a few
parenchymatic cell layers. This developmental progression
remains poorly dissected in trees, but a recent study in Arabidop-
sis described how differentiation steps lead to periderm develop-
ment starting from pericycle cells (Wunderling et al., 2018).

The fundamental role of bark is to harbor phloem transport
and provide protection against environmental factors (Paine
et al., 2010), but also to carry out stem photosynthesis
(Wittmann & Pfanz, 2007; Vandegehuchte et al., 2015). Bark
tissues are rich in secondary metabolites; as such, bark has been a
source of medicinal compounds such as salicylic acid and pacli-
taxel. Recently betulin and related triterpenes extracted from
birches have been assessed as multifunctional drugs to treat
cancerous and infectious diseases (Pisha et al., 1995; Sun et al.,
1998; Liby et al., 2007).

Birches (family Betulaceae, order Fagales) have a broad geo-
graphic distribution across the temperate and boreal forest regions
(EUFORGEN, 2009; Bret-Harte et al., 2001), and they display a
vast diversity of bark phenotypes. White and smooth phellem is a
predominant feature but, among the Betulaceae, phellem colors
can range from red to yellow. The reason for this color diversity is
not known, but it has been suggested that white color reduces the
risk of winter sunscald injury (Karels & Boonstra, 2003). Within
Betulaceae, the closest related genus to Betula (Schenk et al., 2008)
is alder (Alnus). Unlike birch, alder develops a dark-grey and rough
phellem that sheds very slowly, thereby forming a thick and fissured
bark, a rhytidome, a feature common to many tree species. The
two genera thereby provide a striking contrast of bark phenotypes
within the same family, and thus a good comparative system to
study bark evolution.

The molecular regulation that takes place in the vascular cam-
bium is well studied because of its direct effect on lignocellulosic
biomass production (Etchells et al., 2015; Immanen et al., 2016;
Sundell et al., 2017). By contrast, although bark anatomy and
composition are well documented, and even some transcriptomes
have been analyzed (Park et al., 2008; Mantello et al., 2014; Rosell
et al., 2014; Celedon et al., 2017; Rains et al., 2017; Boher et al.,
2018), bark development is still poorly understood at a molecular
level. This is partially because not all tissues have been dissected
and studied in the context of the whole stem, thus making it diffi-
cult to address tissue-specificity. Here we explore the molecular
fingerprints of eight main tissue types in the stem of B. pendula:
phellem, combined phellogen and phelloderm, nonconductive
secondary phloem, conductive phloem, cambium, developing
xylem, xylem, and last year’s xylem tissue. We carry out an

integrative study by characterizing the chemical composition and
transcriptional profiles from RNA sequencing (RNA-Seq) for
each tissue. The approach reveals, for the first time, the ontogeny-
dependent transcriptional profile of bark fractions, and identifies
both common and specific regulatory components for the phel-
logen and vascular cambium. Finally, we show that the phellem is
exceptionally different within the stem transcriptome, revealing
both conserved and diversified expression patterns for metabolic
pathways between two Betulaceae species, birch and alder.

The molecular evolution of the genetic mechanisms leading to
bark formation is largely unknown. Here we study the pattern of
molecular evolution in the gene families expressed in bark tissues.
Overall, gene families evolve through gene duplication and loss
events. Duplications can be divided into two overall categories:
whole-genome multiplications (WGM) and small-scale duplica-
tions (SSD), including segmental, tandem, and transposon-
induced duplication events (Panchy et al., 2016; Tasdighian
et al., 2017). Individual gene families evolve by either one of
these processes. After WGMs, transcriptional and developmental
regulators and signal transduction components are preferentially
retained (Freeling, 2009; Carretero-Paulet & Fares, 2012),
whereas genes evolving by SSDs are enriched for environmental
responses and secondary metabolism (Panchy et al., 2016); we
recently observed similar patterns in silver birch (Saloj€arvi et al.,
2017). A prevailing hypothesis for the retention bias is dosage
balance; complex pathways and protein complexes may require
that the stoichiometric balance of the interacting components is
maintained. Therefore, selection would act against duplications
in SSDs, as maintaining dosage balance requires the duplication
of all components, whereas after WGMs the losses need to be
coordinated (Birchler et al., 2001). As bark is the main protection
against environmental factors and a rich source of secondary
metabolites we would therefore expect gene families evolving
through SSDs to contribute significantly to the transcriptomics
profile in bark tissues.

Materials and Methods

Plant material

Three 13-yr-old B. pendula (v5834) clones were obtained from
the experimental field of Viikki Campus (University of Helsinki),
and three individuals of B. davurica (1990-0384), B. alleghaniensis
(1990-0384), B. ermanii (1993-0483), and B. papyrifera (1992-
0177) from Kumpula Botanic Garden, Helsinki. Three Alnus
glutinosa (v7090) clones were provided by LUKE (Natural
Resources Institute Finland). Trees were sampled at a 1.5 m
height.

Tissue-specific sampling

Sequential tangential cryosections were collected with three bio-
logical replicates per fraction (F) and processed independently.
Once a fraction was removed, a cross-section was observed under
the microscope to localize the anatomical position. A similar
strategy has been used before (Tuominen et al., 1997; Hellgren

� 2019 The Authors

New Phytologist� 2019 New Phytologist Trust
New Phytologist (2019) 222: 1816–1831

www.newphytologist.com

New
Phytologist Research 1817



et al., 2004; Fagerstedt et al., 2015; Immanen et al., 2016; Sun-
dell et al., 2017). The fractions were divided into eight tissue
types (Supporting information Fig. S1). Phellem (F1) layers (L1–
L4) from Betula species were collected by peeling, whereas Alnus
was dissected with a microtome blade by tangential sections.
Phellogen and phelloderm (F2) were dissected through cryotome
sections (10 lm, �27°C). Phellogen includes the first layer of
stem cells and the phelloderm, corresponding to green photosyn-
thetic tissue (max. 15 cell files); this fraction may have minimum
traces of F3. Nonconductive secondary phloem (F3) was col-
lected after complete removal of phelloderm uncovering a dark-
brown tissue, and thus there are no traces of F2. The conductive
phloem (F4) contains the developing and actively transporting
phloem, tissue between phloem fibers and cambium. The
cambium fraction (F5) consists of gelatinous-like meristematic
tissue. The developing xylem (F6) contained soft fibrous xylem
tissues. After F6 was removed, xylem (F7) was collected until the
annual ring. Finally, xylem tissue (F8) was collected from the pre-
vious annual ring. Two series of samples were generated for RNA
extraction and chemical analyses. Post RNA-Seq, the expression
profiles of tissue-specific marker genes (WOX4, ANT, APL,
VND7) were checked to monitor sample purity.

Noncellulosic carbohydrate analysis

The tissue samples were milled with a bead mill (30 Hz, 90 s),
followed by washing three times in 50% ethanol to remove sol-
uble sugars. The alcohol insoluble residues (AIR) were dried in a
freeze dryer and treated by Bacillus licheniformis a-amylase
(Megazyme, 5 Umg�1 AIR) to remove starch. The destarched
AIR was washed in water and dried in a freeze dryer. The noncel-
lulosic sugar composition was determined through a small-scale
acid methanolysis (Chong et al., 2015). The methyl ester methyl
glycosides/methyl glycosides were trimethylsilylated and sepa-
rated by gas chromatography according to (Chong et al., 2013).

Histological sections and suberin staining

Histological sections were processed as described before (Id€an-
heimo et al., 2014) and imaged using a Leica 2500 microscope.
Fluorol yellow 088 (Sigma) was used according to (http://wp.
unil.ch/geldnerlab/files/2013/07/Fluorol-Yellow-staining.pdf).
Staining was applied on top of the resin-embedded 5 lm micro-
tome sections.

Desorption atmospheric pressure photoionization-mass
spectrometry measurements

The DAPPI method allows a direct desorption/ionization of
compounds from bark tissue surface, and is described in (Haapala
et al., 2007). Briefly, the sample surface was sprayed with hot sol-
vent jet for 8 s, producing gaseous analytes which were ionized
with a vacuum ultraviolet lamp and a suitable dopant, here the
spray solvent toluene. The resulting ions were detected with MS
using positive ion mode, and the mass range was m/z 50–700. A
more detailed description is given in Method S1.

Quantitative analysis of triterpenes

The bark/wood fractions were precut with scissors, and ground
with a Mixer Mill MM 400 for 39 30 s at 30 Hz. The milled
fractions were freeze dried overnight and stored at �20°C; 10 mg
of dried material was weighed, and depending on the expected
content of triterpenes, 1–8000 lg of cholesterol (50–
10000 lg ml�1 in ethanol) was added. Triterpenes were extracted
with 500 ll of 80% ethanol at 80°C for 30 min, followed by
extraction with 500 ll of 80% ethanol at room temperature. The
sample was centrifuged at 8944 g for 5 min between the extrac-
tion steps, and the collected supernatants were combined. The
triterpenes were recovered from the supernatant by adding 500 ll
of saturated sodium chloride solution, followed by extraction
with 1 ml of heptane : diethyl ether (1 : 1, v/v). The extraction
was repeated twice. The details of GC�MS analysis are described
in Method S2.

Infrared spectroscopy

Infrared (IR) absorbance spectra were recorded with a Vertex 70
Fourier Transform Infrared (FTIR) spectrometer (Bruker Optik,
Ettlingen, Germany) fitted with a MIRacle® single-bounce dia-
mond attenuated total reflection (ATR) accessory (Pike Tech-
nologies, Fitchburg, WI, USA). Each sample was measured in
triplicate in the bulk region of each phellem layer. The spectra
were collected with OPUS 5.5 software (Bruker Optik, Ettlingen,
Germany) over the spectral range of 650–4000 cm�1 with
4 cm�1 resolution. Each spectrum was the average of 64 scans.
Principal component analysis (PCA) of the IR spectra was carried
out using THE UNSCRAMBLER X 10.3 (CAMO, Oslo, Norway)
after standard normal variate (SNV) normalization over the spec-
tral region 650–1800 cm�1. Informative principal components
were detected using leave-one-out cross-validation.

Total RNA extraction and RNA sequencing

Samples from B. pendula and Alnus glutinosa cryosections (three
biological replicates per fraction) were ground in an Oscillating
Mill MM400 by cooling with liquid nitrogen in 30-s intervals.
The sample from F1 was cut into small pieces in a mortar in liquid
nitrogen prior grinding. Total RNA isolation was carried out as
previously described (Lim et al., 2016). Single-end RNA sequenc-
ing was conducted for birch at Biomedicum Functional Genomics
Unit (FuGU, University of Helsinki) using an Illumina
HiSeq2500 platform. Alnus glutinosa libraries were made using
the Ovation® Universal RNA-Seq System from NuGen and cus-
tom ribosomal removal oligos. Following control with RNANano
Chip (Agilent Technologies, Santa Clara, CA, USA) the samples
were sequenced with NextSeq500 using 75 bp sequencing kit.

RNA-Seq analysis

After quality control with FASTQC, adapter removal and read
trimming was carried out with TRIMMOMATIC-0.36 (Bolger et al.,
2014). KALLISTO v.0.43.0 (Bray et al., 2016) with 4000 bootstrap
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replicates was used to map reads to B. pendula and A. glutinosa
gene models, followed by removal of ribosomal gene models.
The k-mer was determined with KMERGENIE-1.6982 (Chikhi &
Medvedev, 2014). The final count tables were obtained as the
mean of bootstrap replicates. A full description of RNA-Seq data
processing and analysis is given in Method S3.

Data accessibility

All sequencing data have been deposited in the European
Nucleotide Archive (ENA) under accession code PRJEB29260.

Results

Spatial tissue-specific profiling of tree stem, dissecting bark
and wood

Tangential cryosectioning provided a stemwide perspective of
bark tissues in B. pendula. The stem was dissected into eight
anatomically differentiated tissues: phellem (F1), phellogen (cork
cambium) and phelloderm (F2), nonconductive phloem (F3),
conductive and developing phloem (F4), vascular cambium (F5),
developing xylem (F6), mature xylem (F7) and the previous
year’s xylem tissues, or annual ring (F8); (Fig. 1a). The tissues
clearly differed in their anatomy (Fig. 1b, i,ii). Among the perid-
erm tissue samples, the phellem (F1) was composed of a white,

hydrophobic and multilayered tissue, and fraction F2 consisted
of phellogen (3–4 meristematic cell layers) and phelloderm, a soft
green tissue with parenchymatic cells rich in chlorophyll. The
nonconductive phloem (F3) contained phloem fibers, sclereids,
and crushed sieve element cells. Radial sections showed that
about 88% of the bark width was composed of nonconductive
(F3) and conductive phloem (F4), produced by the vascular cam-
bium (F5), whereas the remaining 12%, the periderm, originates
from the phellogen (F2). Analogous tissues and cell types were
found in the periderm of Alnus glutinosa, (Fig. 1b, iii). In alder,
the fractions F2 and F3 were rich in living cells whereas the
phellem (F1) consisted mostly of dead sclereids merged with the
older rhytidome.

The lignin composition in the same bark and xylem fractions
has been analyzed earlier (Fagerstedt et al., 2015), showing that
bark tissues have a low S/G ratio, increasing towards the xylem.
We continued by comparing the relative amounts of noncellu-
losic sugars. Interestingly, the bark fraction F2 and F3 profiles
resembled mature xylem fractions F6 to F8, all being rich in
xylose (22–26% dry weight) (Fig. 1c). By contrast, the develop-
ing phloem (F4) and vascular cambium (F5) contained less xylose
(8–12% dry weight), whereas the amounts of glucose, galactur-
onic acid, and arabinose were significantly elevated compared to
other fractions. Additionally, galactose was abundant in the vas-
cular cambium (F5). The sugar profiles detected in F4 and F5 are
rich in xylose and galacturonic acid, the constituents of

(a)

(b)

(c)

Fig. 1 Comparative dissection of stem cryosections. (a) The stem of Betula pendulawas dissected into eight anatomically distinct fractions according to
tissue type. (b) Magnification of bark radial sections. (bi, bii) Anatomy of Betula pendula bark tissues and periderm fractions (F1–F3) including the first
layer of phellem (L1). (biii) Radial section from Alnus glutinosa periderm. (c) Noncellulosic sugar content across eight stem fractions of B. pendula. Ara,
arabinose; Rha, rhamnose; Xyl, xylose; GlcA, glucuronic acid; meGlcA, 4-O-methyl glucuronic acid; GalA, galacturonic acid; Man, mannose; Gal,
galactose; Glc, glucose. Error bars indicate the SD from three biological replicates.
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xyloglucan and pectin, typical components of primary cell walls
(McNeil et al., 1984) abundant in meristematic and parenchy-
matic tissues. The chemical profile of phellem (F1) was excep-
tional with less noncellulosic sugars than any other fraction;
therefore, we further studied its chemical composition.

Triterpene and suberin composition of periderm across
species, developmental stages and tissues

The characteristic white color of many birch species has been
associated with triterpenes, with betulin being the most abundant
(Krasutsky, 2006; Yin et al., 2012). We analyzed the relative
intensities of betulin and its precursor, lupeol, in three develop-
mental stages of silver birch stems (Fig. 2a, i–iii): mature stem at
1.5 m height (white color), the transition zone (light-brown
color), and young stems (brown color). We found increasing
betulin and lupeol concentrations from young brown stems
towards white mature samples. We studied their tissue-specific
localization in four bark fractions (F1–F4), observing high con-
centrations in F1 and F2 and low traces in F3 and F4 (Fig. 2b, i,
ii; Table S1). Since the metabolites are predominantly accumu-
lated in the phellem (F1), we compared the concentration of six
triterpenes among different Betulaceae species (Fig. 2c;
Table S1). To capture the variation in color and texture we

examined A. glutinosa (rough grey phellem), B. davurica (red),
B. alleghaniensis (yellow), and three white phellem species:
B. ermanii, B. papyrifera and B. pendula (Fig. 2a, iv–vii). The
highest concentration of betulin was found in B. pendula and the
lowest in A. glutinosa, with the phellem of (brown-colored) apical
stems in B. pendula containing as much betulin as other white
birches. Interestingly, the concentration of the lupeol precursor
was very similar between B. pendula and A. glutinosa. These
results suggest that high betulin concentration has been under
selective pressure in silver birch and is strongly associated with
the white color. Despite the close phylogenetic relationship
between A. glutinosa and Betula species, a higher accumulation of
betulin and its derivatives was observed in the birches, suggesting
that the betulin biosynthesis pathway is more active in birches. In
addition to betulin, we studied the suberin localization using a
staining method. Birch and alder shared a phellem-specific local-
ization (Fig. 2d), similar to other angiosperm tree species Quercus
spp. and Populus spp. (Soler et al., 2007; Rains et al., 2017).

Anatomically, birch phellem is a multilayered tissue in which
the innermost layer (L1) is in direct contact with the phellogen,
the meristem from which it develops. To further characterize the
composition and structure across phellem layers, we analyzed the
infrared absorbance spectra of these tissues in B. pendula and
A. glutinosa at 1.5 m height. In all B. pendula phellem layers the

(a) (b)

(c)
(d)

Fig. 2 Inter- and intra-species chemical analysis of bark tissues in the Betulaceae family. (a) Examples of bark color and texture in six Betula and Alnus

species. (ai) Betula pendulamature stem at 1.5 m height. (aii) Betula pendula transition zone stem. (aiii) Betula pendula young apical stem. (aiv) Alnus
glutinosamature stem. (av) Betula davuricamature stem. (avi) Betula alleghaniensismature stem. (avii) Betula ermaniimature stem. (aviii) Betula
papyriferamature stem (white arrows indicate the phellem tissue). (b) Betula pendula betulin (bi) and lupeol (bii) intensities measured by desorption
atmospheric pressure photoionization�mass spectrometry (DAPPI�MS) showing the tissue-specific metabolite localization in bark cryosections at different
developmental stages. (c) Quantitative analysis by gas chromatography–mass spectrometry (GC�MS) of triterpenes in the phellem (F1) of six species. In
(b, c), bar plot illustrates the means and the SEs calculated from three biological replicates in each fraction, developmental stage and species. (d) Suberin
localization by fluorol yellow 088 staining in B. pendula (di) and A. glutinosa (dii), light (left) and ultraviolet (UV) light (right) microscopy images (white
brackets, F1).

New Phytologist (2019) 222: 1816–1831 � 2019 The Authors

New Phytologist� 2019 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist1820



spectra were dominated by signal corresponding to betulin in an
amorphous state (Fig. 3a; Cinta Pinzaru et al., 2002; Falamas
et al., 2011). By contrast, the spectra of A. glutinosa were devoid
of betulin and were instead dominated by cellulose and holocellu-
lose features (Schwanninger et al., 2004; Djikanovic et al., 2016).
These differences are captured in the loadings (Fig. 3a) and scores
(Fig. 3b) from the PCA, with the first principal component
(PC1) explaining 90% of the total spectral variation and clearly
differentiating B. pendula and A. glutinosa. The PCA plot also
demonstrates that there was no systematic variation between the
biological replicates, nor were there differences between the
phellem layers for B. pendula. The birch stem analyzed at differ-
ent heights shows variation in the spectra according to the chemi-
cal composition of the phellem across different developmental
stages (Fig. S2). Altogether, these analyses highlight that betulin
abundance largely contributes to phellem characteristics in
Betula, and that chemical composition showed a clear distinction
of the periderm.

Stem-wide gene expression profiling in Betula

We next carried out transcriptional profiling with RNA-Seq
across the eight stem tissues to link the chemical characteristics
with gene expression. In total, 57.1% (16790/29439) of all tran-
scripts were expressed in the stem (Table S2). A multidimen-
sional scaling (MDS) plot of the data showed clustering
according to tissue type (Fig. 4a). Interestingly, the phellem (F1)
stood out as the most transcriptionally differentiated tissue.
MDS1 and MDS2 together separated developing and mature

wood tissues (F6–F8) from bark fractions (F1–F4) and vascular
cambium (F5). The diversity of transcriptional profiles across
bark fractions is highlighted in the MDS1 axis, where tissues are
ordered according to their position in the stem and following
their developmental progression: on one side F1-F2, which
develop from the phellogen (F2), and on the other side F4-F5,
which originate from the vascular cambium (F5), with F3 in the
middle.

To compare differentially expressed genes (DEGs) between
bark fractions and identify tissue-specific genes, we calculated
fold changes against F8, the previous year’s annual ring
(Table S2). As indicated by the MDS plot, F1 had the largest
number of tissue-specific DEGs (8320 genes; Fig. 4b). The pairs
F1�F2 (periderm), followed by F4�F5 (phloem and vascular
cambium) had considerable numbers of overlapping DEGs (973
and 1026 genes, respectively) (Fig. 4b). Gene ontology (GO) and
biochemical pathway enrichment analysis was then carried out to
summarize the tissue-specific transcriptional profiles (Tables S3,
S4). F2 was enriched for GO terms associated with photosynthe-
sis and suberin biosynthesis, whereas F3 (the largest bark frac-
tion) was enriched for diverse mechanisms of secondary cell wall
biogenesis and modification, as well as response to physical stim-
ulus. One interesting example of F3 peaking genes is PIN3
(Bpev01.c1162.g0001), which is involved in stem gravitropism
(Gerttula et al., 2015). Fraction F4 was enriched for GO terms
related to phloem development and function, including key
phloem identity genes such as APL (Bpev01.c0189.g0073)
(Bonke et al., 2003). The previously reported difference in lignin
compositions in F4 vs F6 (phloem vs xylem) was reflected in

Fig. 3 Spectral analysis of phellem layers comparing Betula pendula and Alnus glutinosa. (a) The normalized absorbance spectra from attenuated total
reflection infrared spectroscopy (ATR-IR; upper panel) and the loadings from principal component analysis (PCA; lower panels) illustrate that the main
difference between B. pendula and A. glutinosa is associated with relative betulin (Cinta Pinzaru et al., 2002; Falamas et al., 2011) content to typical
cellulose (Djikanovic et al., 2016) and holocellulose (Schwanninger et al., 2004) signals. (b) A plot of PCA scores displays distinct separation between
B. pendula (green triangles) and A. glutinosa (red circles) bark samples. Samples are identified by: N, biological replicate number; L, layer number. AP, the
layer adjacent to the phellogen (latest developed); OL, the outermost layer.
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comparative transcriptomics, revealing different laccases and class
III peroxidases expressed in each tissue (Table S5).

Genome evolution has shaped birch transcriptome profile

Considering the role of bark as the main stem protectant against
environmental factors, we expected to see genes evolving through
SSDs to contribute significantly to gene expression in bark tis-
sues. Surprisingly, the differential expression profiles across all
stem fractions were significantly enriched for genes originating
from the gamma paleohexaploid WGM event (Jaillon et al.,
2007), such as zinc finger, bHLH and WRKY transcription fac-
tors many of which are differentially expressed in the periderm
(F1 and F2), but also in the remaining fractions. Conversely,
tandemly duplicated genes showed depletion (Table S6). This
suggests that gene expression profiles of the differentiated tissue
types and possibly the tissue types themselves have evolved from
gene regulatory functional diversification following the WGM
events, given that WGM-duplicated genes are enriched for tran-
scriptional functions (for example Saloj€arvi et al., 2017).

We further carried out enrichment analysis of the previously
detected set of 913 genes under putative selective sweeps in silver
birch (Saloj€arvi et al., 2017) to explore whether these genes have
a role in these tissues. All stem fractions were enriched for this set
(Table S6), suggesting that local adaptation and thereby environ-
mental conditions have a strong influence on tissue differentia-
tion and thus wood composition in birch.

F2 and F5: Bark stem cell niches-potential meristematic
regulators of phellogen and vascular cambium

Gene expression profiling at a high resolution makes it possible
for the first time to compare the transcriptomes of the two lateral
meristems, phellogen and vascular cambium, to the transcrip-
tomes in the rest of the stem. In order to identify the genes
involved in meristematic activity of both F2 and F5, these

fractions were pooled and compared against the rest of the pooled
fractions (F1, F3, F4, F6, F7 and F8), resulting in 526 significant
DEGs (Fig. S3; Table S7). Many of these genes peak in both
fractions, and this subset includes central regulators of cell prolif-
eration (Fig. 5). These genes were enriched for GO categories
related to meristematic activity, DNA replication and cell divi-
sion (Figs 5, S4), but also photosynthesis (Table S7). The photo-
synthesis activity was significantly biased towards F2, likely due
to the presence of phelloderm cells (Table S7). F5 on the other
hand expressed slightly more genes related to plant-type cell wall
and regulation of meristem growth, although the bias was not sig-
nificant after false discovery rate (FDR) correction. We further
curated the list of 526 genes to reveal genes that predominantly
peaked in F2 or F5, and additionally compared the fractions indi-
vidually against the rest of the stem to identify candidate cam-
bium- or phellogen-specific genes (Fig. S3).

Altogether, 17 transcription factors (TFs) showed an F2-
specific peak in expression. One example is the ortholog of
Arabidopsis KANADI1, a known regulator of organ polarity (Ker-
stetter et al., 2001). Out of 32 TFs with significantly elevated tran-
script levels, 22 peaked in both fractions, for example birch
orthologs of WUSCHEL RELATED HOMEOBOX 4 (WOX4)
and AINTEGUMENTA (ANT). In Arabidopsis, WOX4 controls
cell divisions in the vascular cambium (Hirakawa et al., 2010) and
ANT is required for lateral organ formation (Elliott et al., 1996)
and cell proliferation in the vascular cambium in a synergistic
genetic interaction with CYCD3.1 (Randall et al., 2015). Simi-
larly in birch, the expression patterns of putative CYCLD3.1 and
ANT orthologs showed significant correlation (Table S8). We also
identified an additional 15 CYC and CDK genes with high
expression levels in F2 and F5. Interestingly, only three cyclins
were specific to F5, and one type-D to F2, indicating that only a
few cyclins contribute to the meristem-specific regulation of the
cell cycle. Another large group of transcripts that reflects the
mitotic activity in both meristems are enzymes and histones asso-
ciated with the mechanisms of DNA replication. Finally, 36

Fig. 4 Tissue-specific transcriptome analysis across the stem of Betula pendula. (a) Multidimensional scaling (MDS) plot of expression counts of bark
tissues from B. pendula. The three biological replicates from each fraction are grouped with an ellipse (95% confidence interval), and colored according to
the fraction. (b) Venn diagram of differentially expressed genes in B. pendula bark cryosections, including both meristems (F2 and F5).
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putative receptor-like kinases (RLKs) potentially involved in sig-
naling were identified in F2 and/or F5 (Table S7). Taken together,
the gene expression profiles of the phellogen and vascular cam-
bium demonstrate gene groups with largely overlapping compo-
nents, but also meristem-specific elements, opening new questions
on the evolution and development of lateral meristems in trees.

F1: Transcriptional profiling of phellem reveals
diversification of triterpenoid biosynthetic pathways in
Betula

The birch phellem (F1) has a unique metabolic and transcrip-
tional fingerprint, and this was reflected by the largest number of
fraction-specific DEGs. We found a significant enrichment for

44 PlantCyc metabolic pathways related to secondary
metabolism, such as sesquiterpenes, and mono- and tri-
terpenoids (Fig. 6a; Table S4). The majority of these compounds
are known phytotoxins with roles in plant defence (Chen et al.,
2016). Many of the enriched pathways share common reactions
or joint intermediate compounds (Fig. 6b), making it difficult to
identify the correct pathway. Therefore curation taking into
account the biochemical composition of birch bark was required.
For example, both ursolate and a-amyrin biosynthesis pathways
were significantly enriched in F1. Ursolate is the product of oxi-
dation reactions at the C-28 of a-amyrin, and birch bark is
known to contain ursolic acid (Mishra et al., 2016; Godia et al.,
2018). Similarly, through further curation, we identified enrich-
ment of the saponin, oleanolic acid and oleoresin pathways.

Fig. 5 Normalized abundances of common meristematic regulators of phellogen and vascular cambium in Betula pendula. The heat maps show log2 of
transcript per million (TPM) values. The color is proportional to the transcript abundance, and scale is displayed in the color key. The genes are highlighted
according to the presence of nearby selective sweep patterns and the duplication origin of the genes; whole-genome duplication (syntenic), tandemly
duplicated gene (tandem), or whether the gene family has experienced a birch-specific expansion. Columns represent bark cryosections (F1–F8) and rows
the homologous genes classified to five categories: (a) DNA replication related proteins; (b) cyclins; (c) histones; (d) transcription factors; and (e) receptor-
like kinases (RLK). Expression values are given in Supporting Information Table S2.
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Saponins accumulate in epidermal cells and saponin has been
identified in birch leaves (Rickling & Glombitza, 1993; Tava &
Odoardi, 1996; Deepak et al., 2018), whereas oleanolic acid was
quantified in our chemical characterization (Table S1). Finally,
the constituents of oleoresin have been identified in B. pendula
buds (Demirci et al., 2004; Maja et al., 2015). These metabolites
have important roles in plant defence. Oleanolic acid has antimi-
crobial effects (Fontanay et al., 2008), whereas oleoresin is known
to accumulate at the site of injury to seal off the open wounds in
plants and to act as an insecticide (Trapp & Croteau, 2001).
Altogether, the set of enriched metabolic pathways transcription-
ally active in F1 emphasizes the importance of phellem in plant
defence against biotic and abiotic stresses.

F2 vs F3: Towards understanding the transcriptomics
landscape that contribute to differences in bark
characteristics between Betula and Alnus

By contrast with birch, alders develop a phellem layer that merges
with a dark-grey and rough rhytidome. In order to understand
the gene regulation underlying this difference we compared tran-
scriptional profiles in anatomically comparable fractions. While
birch phellem (F1) contains layers of living tissue and dead cells,
F1 in alder is mainly composed of dead phellem (Fig. 1b, III),
which yields only small traces of highly degraded RNA. This does

not exclude the presence of an active phellem in alder, but given
its anatomy and structure, the phellem seems to consist of only a
few cell files merged with older rhytidome, which in our cryosec-
tioning approach was indistinguishable from the phellogen (F2).
As in birch the main periderm pathways were already upregulated
in F2 compared to F3, we dissected the corresponding tissues
from alder to identify transcriptional differences. From the pre-
processed RNA-Seq reads, 41.65% mapped to A. glutinosa gene
models (Saloj€arvi et al., 2017; Method S3), and altogether 69%
(29 436/42 653) of all gene models were expressed (Table S9).

To explore the genome evolution underpinning the pheno-
typic differences between the two species, we clustered the pro-
teomes of Arabidopsis thaliana, B. pendula, A. glutinosa, Populus
trichocarpa and Vitis vinifera into computationally derived gene
families, orthogroups (OGs), using Orthofinder. The analyses
yielded 15154 orthogroups (Table S10), with 3863 OGs con-
taining at least one significantly differentially expressed gene
(FDR ≤ 0.05) in F2. We identified birch-specific expansions by
comparing the gene counts to alder and grapevine, resulting in
935 orthogroups with birch-specific expansions, comprising
4042 genes. Altogether 29 GO categories were enriched in this
set, related to biotic stresses, nutrient transport and plant defenses
but also to wood development (Table S11). Tandemly duplicated
genes were enriched among the birch-specific expansions
(P = 4.6e-29; Fisher’s test), but depleted in transcript profiles. By

Fig. 6 Schematic representation of phellem (F1) enriched pathways in Betula pendula. (a) Homologous metabolic pathways enriched in phellem of
B. pendula (reference database: PlantCyc v10.0). Y-axis lists the significantly enriched metabolic pathways, x-axis shows the max(mean) log2 of fold
change (log2FC) summary statistic used for assessing the enrichment of the pathway. Fold changes were calculated from phellem (F1) vs the old xylem (F8)
comparison. The pathways that contribute to betulin or suberin biosynthesis are highlighted in red and orange, respectively. (b) The enriched homologous
pathways of secondary metabolite biosynthesis in the periderm (F1 and F2) of B. pendula. The color intensity corresponds to the log2 fold change, the
differential expression value of the homologs in each fraction (F1–F7) vs F8 comparison, and the color key illustrates the scale. The genes are highlighted
according to the presence of nearby selective sweep patterns, and their duplication origins; either whole-genome duplication (syntenic), tandem
duplication (tandem), or whether the gene family has experienced a birch-specific expansion. An asterisk indicates an enzyme. IPP, isopentenyl
diphosphate; GPP, geranylgeranyl diphosphate; FPP, farnesyl pyrophosphate (synthetase). Mevalonate pathway (MVA) is located in the cytoplasm, and 2-
C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate pathway (MEP/DOXP) in plastid. Both pathways are exchanging intermediate
compounds (shown by arrows). Metacyc IDs: oleoresin (PWY-5423), b-amyrin (PWY-5377), avenacin (PWY-7476), saponin (PWY-5203) and oleanolate
(PWY-7069), ursolate (PWY-7068), lupeol (PWY-112), betulinate (PWY-7067) biosynthesis.
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contrast, birch-specific expansions were enriched in the expres-
sion profiles across all tissues (Table S6), suggesting an important
role for localized, and possibly coregulated, gene duplicates.

Suberin biosynthetic genes share similar bark expression
pattern in Betula and Alnus

Suberin is a glycerolipid-phenolic heteropolymer constituting a
hydrophobic barrier in various tissues. We identified the putative
birch and alder orthologs involved in suberin biosynthesis (Vish-
wanath et al., 2015) and studied their expression patterns across
all tissue samples (Fig. 7). In birch, the suberization pathway was
predominantly active in the periderm tissues F1 and F2. How-
ever, while most of the genes were expressed in both tissues,
suberin staining was specific to F1, indicating that suberin is
deposited in the differentiated phellem layers. In alder, the
expression levels were significantly correlated (Spearman
rho =�0.94, P = 0.005) with the putative birch orthologs
(Fig. S5a; Table S8), albeit with a different sign, suggesting

decreasing activity in alder, and suberin staining was similar to
birch in terms of localization (Fig. 2d). This periderm specificity
has been shown in poplars and oaks (Rains et al., 2017) as well,
suggesting conservation between several tree species. Birch-
specific gene expansions (P = 0.009; Fisher’s test) were enriched
in the suberin pathway, more specifically the fatty acid elongase-
like genes (Fig. 7). Most of these genes were not highly expressed
in periderm tissues, suggesting possible functional specializations
in other tissues or for other substrates.

Mevalonate/betulin biosynthetic genes are highly
expressed in Betula periderm

Isopentenyl pyrophosphate and dimethylallyl pyrophosphate are
produced by the cytosolic mevalonate (MVA; PlantCyc: man-
grove triterpenoid pathway) and the plastid nonmevalonate
MEX/DOXP pathways. They are a substrate for an immense
diversity of secondary metabolites such as sterols, carotenoids,
sesquiterpenes and triterpenes. Betulin is produced by the MVA

Fig. 7 Expression pattern of putative suberin biosynthesis genes in fractions F2 and F3 of Betula pendula and Alnus glutinosa. Suberin pathway genes are
highly expressed in the periderm of both species. Suberin pathway orthologs were identified by first assessing homology to known genes from Arabidopsis
(Vishwanath et al., 2015), and then estimating a phylogenetic tree for the homologs. The gene IDs ‘Bpev01’ identify B. pendula gene models, and the
gene IDs with ‘scaffold’ identify A. glutinosa gene models. For each metabolic step, the gene expression levels from both species are shown side by side.
The color keys show the scale of log2 of fold change (log2FC) and log2 of transcript per million (log2TPM) values of the homologous genes. The blue-red
palette illustrates the differential expression value of the genes in F2 vs F3 comparison, and the yellow-blue palette the normalized abundances of the
genes in each fraction (F1–F8). The genes are highlighted according to the presence of nearby selective sweep patterns and the duplication origin of the
genes; either whole-genome duplication (syntenic), tandem duplication (tandem), or whether the gene family has experienced a birch-specific expansion.
FAE, fatty acid elongation; FAR, fatty acyl reductases; CYP, cytochrome P450; x-OHs, x-hydroxy fatty acids; DCA, a,x-dicarboxylic acids; G3P, glycerol-
3-phosphate; GPAT, glycerol 3-phosphate acyltransferases; LACS, long-chain acyl-CoA synthetases; ABC, ATP-binding-cassette; ASFT, aliphatic suberin
feruloyl transferase; FACT, fatty alcohol:caffeoyl-CoA caffeoyl transferase. The expression values of F2 vs F3 are presented in Supporting Information
Table S2.
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pathway; it is synthesized from 2,3-oxidosqualene through con-
version to lupeol by lupeol synthase, and then to betulinate by
lupeol 28-monooxygenase. Betulin and its derivatives have been
studied intensively for their potential pharmaceutical and indus-
trial applications (Sun et al., 1998; Kashiwada et al., 2001;
Yamashita et al., 2002; Tubek et al., 2013; Haavikko et al., 2014;
Harma et al., 2015; Laavola et al., 2016).

An orthology-based approach identified homologs of the five
key enzymes in squalene and betulinate biosynthesis in
B. pendula and A. glutinosa. The last step in betulin biosynthesis,
conversion of lupeol to betulinate, is catalyzed by lupeol 28-
monooxygenase, an enzyme belonging to the multifunctional
CYP450 family. Phylogenetic analysis including experimentally
verified enzymes from Medicago truncatula and Vitis vinifera
(Fukushima et al., 2011) identified Bpev01.c0219.g0021 and
EVM.TU.scaffold6988_size10636.3 as the likely orthologs in
birch and alder, respectively (Figs S6a, 8). The birch ortholog
demonstrated high expression levels in periderm tissues, whereas
the expression level of the alder ortholog was only slightly
elevated.

Tandemly duplicated genes were significantly enriched
(P = 0.006; Fisher test) among birch homologs for betulin
biosynthesis, with duplications in farnesyl diphosphate synthases
(FPP) and lupeol synthases (LUS). There were altogether nine
LUS homologs in the B. pendula genome. The two most likely
LUSs (Fig. S6b) appeared in tandem within 28 kbp of the lupeol
monooxygenase. Microsyntenic comparison with alder, birch,
M. truncatula and V. vinifera (grape) showed a similar orientation
in grape, except that in Vitis the untranslated regions (UTRs)
were separated by 5 bp, and the LUS duplication was birch-
specific (Fig. S7). Comparison against Amborella trichopoda
(Amborella Genome Project, 2013) suggests that the common
ancestor contained a tandem of two CYP450 (Fig. S8). Further
comparison with Coffea canephora identified an arrangement sim-
ilar to grape, suggesting that the genome rearrangements before
the gamma event placed LUS in their proximity, and in birch the
LUSs experienced a tandem duplication. Similar tandem expan-
sions have occurred in cycloartenol cyclases, as well as for other
CYP450 with possibly Betulaceae-specific functions (Fig. S6b).
In addition to ubiquitous AT-rich motifs, analysis of the LUS

Fig. 8 Expression pattern of putative genes of mevalonate pathway (betulin biosynthesis) in fractions F2 and F3 of Betula pendula and Alnus glutinosa.
Betulin biosynthesis is transcriptionally more active in the periderm of B. pendula compared to A. glutinosa, as observed in F2 vs F3 comparison. The gene
IDs ‘Bpev01’ identify B. pendula gene models, and the gene IDs with ‘evm.model’ identify A. glutinosa gene models. For each metabolic step, the gene
expression levels from both species are shown side by side. The color keys show the scale of log2 of fold change (log2FC) and log2 of transcript per million
(log2TPM) values of the homologous genes. The blue-red palette illustrates the differential expression value of the genes in F2 vs F3 comparison, and the
yellow-blue palette the normalized abundances of the genes in each fraction (F1–F8). The genes are highlighted according to the presence of nearby
selective sweep patterns and the duplication origin of the genes; either whole-genome duplication (syntenic), tandem duplication (tandem), or whether the
gene family has experienced a birch-specific expansion. Mevalonate pathway (Kegg ID: map00900) is located in the cytoplasm and 2-C-methyl-D-
erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate pathway (MEP/DOXP) in plastid, both pathways are exchanging intermediate compounds
(shown by arrows). An asterisk indicates an enzyme. IPP, isopentenyl diphosphate; GPP, geranylgeranyl diphosphate; FPP, farnesyl pyrophosphate
(synthetase); Ss, squalene synthase; S epoxidase, squalene epoxidase; LUS, lupeol synthase; CYP716, cytochrome P716. The expression values of F2 vs F3
are presented in Supporting Information Table S2.
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and CYP450 promoters identified several MYB, and WRKY as
well as circadian CCA1 and LHY1 motifs (Table S12). Corre-
sponding regions in grape and alder contained only a single
WRKY motif in LUS, and overall considerably less MYB/WRKY
motifs in CYP450 and no circadian motifs.

Both birch and alder demonstrated elevated expression levels
in the MVA pathway in periderm. However, in birch the last two
steps of betulin biosynthesis were transcriptionally considerably
more active than in alder (Fig. S5b; Table S8). Additionally, five
out of nine birch LUS paralogs were highly expressed in F2. The
expression pattern was similar also in TPM-normalized count
values (Fig. 8). The chemical quantification showed similar con-
centrations of lupeol, but significantly different concentrations of
betulin between birch and alder. Taken together, these observa-
tions suggest that in birch, a considerably larger amount of
squalene gets converted into lupeol due to the birch-specific
expansion of the LUS gene family. Similar lupeol concentrations
further suggest that the lupeol monooxygenase in birch efficiently
converts most of the lupeol to betulinate, altogether suggesting
that the conversion of squalene to lupeol is the pathway bottle-
neck that has been optimized in birch.

Identification of species specific vs common genes coding
for periderm-abundant TFs in Betula vs Alnus

Taken together, our tissue-specific analyses strongly suggest that
the periderm, and more precisely, the phellem is the final destina-
tion for many secondary metabolites. Furthermore, the periderm
seems to partially have its own developmental regulation. In
order to identify TFs potentially involved in the regulation of
periderm-specific processes, we analyzed all predicted TFs from
B. pendula (Table S13) and identified 82 TFs with periderm-
specific expression patterns. Significant correlation with suberin
pathway genes was observed for 37 TFs, among them seven
orthologs of putative regulators of suberization in Populus (Rains
et al., 2017). Similar analysis yielded 33 TFs with significant cor-
relation with betulin biosynthesis pathway genes, among them 9
WRKYs, 5 NACs and 5 MYB family TFs (Table S8).

The search for alder orthologs of birch periderm TFs returned
62 TFs, of which 41 were also upregulated in F2 compared to F3
(Table S7). The expression of 11 and 17 TFs were found to be
species specific in birch and alder periderms, respectively. The set
of birch-specific genes contained two WRKYs, both of which cor-
related significantly with birch betulin pathway enzymes (puta-
tive WRKY6, Bpev01.c0127.g0039; and putative WRKY23,
Bpev01.c0932.g0014), whereas the set of common TFs con-
tained 5 MYBs, all of which correlated with betulin pathway
enzymes.

Discussion

Trees have evolved long-term adaptive traits to withstand environ-
mental factors native to their habitat, and their bark constitutes the
first barrier to environmental stresses. While studies have character-
ized some aspects of bark, periderm or wood development, the
division into bark-specific vs wood-specific processes has remained

elusive due to the lack of further tissue-specific dissection. Here we
dissected birch bark tissues into five different fractions (from
phellem to vascular cambium) and wood into three stages of xylem
development. The chemical characterization showed that the non-
conductive phloem and xylem were very similar in their composi-
tion of structural noncellulosic sugars, whereas phellem and
phloem-cambium tissues were different, highlighting the difference
between primary and secondary cell walls.

Within bark, the phellem (F1) had less monosaccharides,
instead having high concentrations of amorphous betulin (ap-
prox. 20% of dry weight). Betulin concentration increased with
the age of the stem, and spatially the highest amount was
encountered in the phellem (F1), indicating the importance of
betulin to the outermost stem�environment barrier. Compared
to other Betulaceae species, B. pendula had the highest concentra-
tion of betulin, whereas the concentration was lowest in
A. glutinosa. Both contained similar amounts of the metabolic
precursor lupeol, indicating that betulin accumulation in the
phellem has diversified within the Betulaceae family. Differing
betulin concentration was the distinctive feature in subsequent
spectral analyses as well. By contrast, suberin was equally local-
ized in the phellem of both species.

Transcriptomic analysis of the eight Betula pendula stem tis-
sues revealed the activated metabolic pathways and developmen-
tal processes. The expression patterns across all tissues were
enriched for gene duplicates from the gamma WGM event, sug-
gesting that tissue differentiation may have its origin in the tran-
scriptional regulatory functional diversification following the
WGM. Additionally, the expression profiles were depleted for
tandem duplications.

Unexpectedly, the largest set of tissue-specific genes was observed
in the phellem. This result indicates that this tissue, far from being
unimportant, harbors a plethora of specific mechanisms required
for development, protection and stress responses. In the transcrip-
tomics data, many of the pathways enriched in phellem shared
common reactions or joint intermediate compounds, making it dif-
ficult to identify the correct pathway. One such example was an
enrichment of avenacin biosynthesis in F1. Exclusively present in
oats (genus Avena), avenacin is produced by hydroxylation of b-
amyrin by b-amyrin monooxygenase. However, in grape (Vitis
vinifera) the enzyme with highest sequence similarity has a con-
firmed role in betulin production, and therefore the avenacin path-
way is likely an annotation error due to high sequence similarity.
Therefore a careful curation of the enriched pathways was needed
by comparing against the known birch metabolites.

One well conserved periderm pathway across tree species is
suberin biosynthesis. Accordingly, in birch and alder suberin
deposition was observed in the phellem (F1). The pathway was
already active in F2 and showed similar expression patterns in
both species, suggesting common transcriptional regulation. By
contrast, the betulin biosynthesis pathway showed periderm spec-
ification in birch, but not in alder. The important contribution
of tandem gene expansions to secondary metabolism was high-
lighted here as well, since the analysis suggested that the enhanced
betulin biosynthesis was at least partially due to a birch-specific
tandem duplication of the LUS genes. Additionally, a genomic
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organization with similar TF binding sites makes coexpression of
LUS and the lupeol 28-monooxygenase highly likely. The expres-
sion data showed that the enzymes involved in the last two steps
of betulin biosynthesis were more highly expressed in B. pendula
than in A. glutinosa, supporting Betula-specific amplification of
the betulin biosynthesis pathway.

The ontogeny of bark tissues has been so far characterized
from an anatomical perspective (Evert & Esau, 2007). Earlier
transcriptome comparison between cork and wood tissues sug-
gested a shared set of genes for wood and bark development
(Boher et al., 2018). The higher resolution in our analyses
showed that the transcriptional profile of developing bark tissues
preferentially groups with the meristems from which they origi-
nate. This was visible from the MDS analysis, but also in the
numbers of overlapping DEGs among bark tissues. Overlapping
transcriptional and hormonal gradients across the stem tissues
have been reported during wood formation (Immanen et al.,
2016), and current results indicate that analogous profiles may
be active also during bark development. Our analysis identified
many common regulatory components (TFs, cyclins, and RLK),
but also pointed out meristem-specific regulators. Altogether 22
TFs peaked in both meristems, including ANT, KNOTTED1
and WOX4, the last also reported in oak (Boher et al., 2018).
Interestingly, the birch orthologs of the oak genes reported in
similar context do not have meristem-specific profiles. The regu-
lation of these genes may have diverged between the two species
or, alternatively, the higher spatial resolution of our study could
explain the difference. Finally, the analyses revealed 82 TFs that
predominantly peaked in the periderm, including members of
the MYB, NAC, WRKY, GARP and LOB families. Among
them were orthologs of organ development regulators, including
a MYB66 ortholog involved in epidermal cell fate determination
in Arabidopsis (Lee & Schiefelbein, 1999), and KANADI1,
involved in organ polarity (Kerstetter et al., 2001). Furthermore,
the set contained seven TFs that correlated significantly with
suberin biosynthesis genes and which have also been proposed as
regulators of periderm suberization in poplar. In the case of
betulin biosynthesis, promoter analysis narrowed down the puta-
tive regulators to the MYB and WRKY families, and coexpres-
sion analysis yielded 14 candidates from these families.
Altogether, the integration of transcriptional and chemical pro-
files across the stem provides a molecular framework to answer
questions about bark function and development. Due to its
unique secondary metabolite composition, bark has ample
potential for biotechnological applications: salicylic acid, pacli-
taxel and quinine are classical examples of bark derived drugs,
but modern pharmaceutical biotechnology will provide com-
pletely new opportunities for bark product development.
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Fig. S6 Gene trees of homologs of lupeol 28-monooxygenase
(CYP716) and lupeol synthase (LUS) enzymes identify the puta-
tive orthologs in B. pendula and A. glutinosa.

Fig. S7 Microsynteny plot of lupeol 28-monooxygenase
(CYP716) and lupeol synthase (LUS) orthologs from B. pendula
and Alnus glutinosa (two genome assembly versions), Medicago
truncatula and Vitis vinifera.

Fig. S8 Microsynteny plot of Amborella trichopoda (top), Betula
pendula (middle), and Vitis vinifera (bottom) illustrates the
genome evolution around lupeol 28-monooxygenase (CYP716) gene.
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Methods S2 Triterpenes GC�MS.
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Table S2 The statistics of RNA-Seq data preprocessing and gene
expression analysis of B. pendula cryosections F1–F8.

Table S3 Enriched gene ontology (GO) categories among differ-
entially expressed genes throughout stem fractions.

Table S4 Enriched biochemical pathways (PlantCyc) among dif-
ferentially expressed genes throughout stem fractions.

Table S5 List of developing xylem and phloem genes involved in
lignification.
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ferentially expressed genes.
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candidate TFs.
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Table S10 Overall statistics of ortholog analysis.

Table S11 GO enrichment analysis of birch-specific expanded
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(F2).
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