91 research outputs found

    Impacts of dreissenid mussel invasions on chlorophyll and total phosphorus in 25 lakes in the USA

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94854/1/fwb.12050.pd

    Firm size diversity, functional richness, and resilience

    Get PDF
    This paper applies recent advances in ecology to our understanding of firm development, sustainability, and economic development. The ecological literature indicates that the greater the functional richness of species in a system, the greater its resilience – that is, its ability to persist in the face of substantial changes in the environment. This paper focuses on the effects of functional richness across firm size on the ability of industries to survive in the face of economic change. Our results indicate that industries with a richness of industrial functions are more resilient to employment volatility

    Probabilistic prediction of cyanobacteria abundance in a Korean reservoir using a Bayesian Poisson model

    Full text link
    There have been increasing reports of harmful algal blooms (HABs) worldwide. However, the factors that influence cyanobacteria dominance and HAB formation can be site‐specific and idiosyncratic, making prediction challenging. The drivers of cyanobacteria blooms in Lake Paldang, South Korea, the summer climate of which is strongly affected by the East Asian monsoon, may differ from those in well‐studied North American lakes. Using the observational data sampled during the growing season in 2007–2011, a Bayesian hurdle Poisson model was developed to predict cyanobacteria abundance in the lake. The model allowed cyanobacteria absence (zero count) and nonzero cyanobacteria counts to be modeled as functions of different environmental factors. The model predictions demonstrated that the principal factor that determines the success of cyanobacteria was temperature. Combined with high temperature, increased residence time indicated by low outflow rates appeared to increase the probability of cyanobacteria occurrence. A stable water column, represented by low suspended solids, and high temperature were the requirements for high abundance of cyanobacteria. Our model results had management implications; the model can be used to forecast cyanobacteria watch or alert levels probabilistically and develop mitigation strategies of cyanobacteria blooms. Key Points A Bayesian hurdle Poisson model predicted cyanobacteria abundance Temperature, flushing rate, and water column stability were key factors The model forecasted cyanobacteria watch and alert levels probabilisticallyPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106958/1/wrcr20820.pd

    A Method to Detect Discontinuities in Census Data

    Get PDF
    The distribution of pattern across scales has predictive power in the analysis of complex systems. Discontinuity approaches remain a fruitful avenue of research in the quest for quantitative measures of resilience because discontinuity analysis provides an objective means of identifying scales in complex systems and facilitates delineation of hierarchical patterns in processes, structure, and resources. However, current discontinuity methods have been considered too subjective, too complicated and opaque, or have become computationally obsolete; given the ubiquity of discontinuities in ecological and other complex systems, a simple and transparent method for detection is needed. In this study, we present a method to detect discontinuities in census data based on resampling of a neutral model and provide the R code used to run the analyses. This method has the potential for advancing basic and applied ecological research

    Biological invasions, ecological resilience and adaptive governance

    Get PDF
    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services

    Macrosystems ecology: Understanding ecological patterns and processes at continental scales

    Get PDF
    Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents

    Detecting spatial regimes in ecosystems

    Get PDF
    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory-based method, on both terrestrial and aquatic animal data (U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps and multivariate analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change

    An assessment of the usefulness of a rapid immuno-chromatographic test, "Determine™ malaria pf" in evaluation of intervention measures in forest villages of central India

    Get PDF
    BACKGROUND: Plasmodium falciparum malaria, is a major health problem in forested tribal belt of central India. Rapid and accurate methods are needed for the diagnosis of P. falciparum. We performed a blinded evaluation of the recently introduced Determine™ malaria pf test (Abbott, Laboratories, Japan) compared with microscopy and splenomegaly in children in epidemic prone areas of district Mandla to assess the impact of intervention measures. METHODS: Children aged 2–10 yrs with and without fever were examined for spleen enlargement by medical specialist by establishing a mobile field clinic. From these children thick blood smears were prepared from finger prick and read by a technician. Simultaneously, rapid tests were performed by a field lab attendant. The figures for specificity, sensitivity and predictive values were calculated using microscopy as gold standard. RESULTS: In all 349 children were examined. The sensitivity and specificity for Determine rapid diagnostic test were 91 and 80% respectively. The positive predictive values (PPV), negative predictive values (NPV) and accuracy of the test were respectively 79, 91 and 85%. On the contrary, the sensitivity and specificity of spleen in detecting malaria infection were 57 and 74 % respectively with PPV of 73%, NPV 59 % and an accuracy of 65%. CONCLUSIONS: Determine™ malaria rapid diagnostic test is easier and quicker to perform and has other advantages over microscopy in not requiring prior training of personnel or quality control. Thus, highlighting the usefulness of a rapid antigen test in assessing prevailing malaria situation in remote areas

    The 8200 year B.P. event in the slope water system, western subpolar North Atlantic

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA2003, doi:10.1029/2004PA001074.Stable isotope, trace metal, alkenone paleothermometry, and radiocarbon methods have been applied to sediment cores in the western subpolar North Atlantic between Hudson Strait and Cape Hatteras to reveal the history of climate in that region over the past ∼11 kyr. We focus on cores from the Laurentian Fan, which is known to have rapid and continuous accumulation of hemipelagic sediment. Although results among our various proxy data are not always in agreement, the weight of the evidence (alkenone sea surface temperature (SST), δ18O and abundance of Globigerinoides ruber) indicates a continual cooling of surface waters over Laurentian Fan, from about 18°C in the early Holocene to about 8°C today. Alternatively, Mg/Ca data on planktonic foraminifera indicate no systematic change in Holocene SST. The inferred long-term decrease in SST was probably driven by decreasing seasonality of Northern Hemisphere insolation. Two series of proxy data show the gradual cooling was interrupted by a two-step cold pulse that began 8500 years ago, and lasted about 700 years. Although this event is associated with the final deglaciation of Hudson Bay, there is no δ18O minimum anywhere in the Labrador Sea, yet there is some evidence for it as far south as Cape Hatteras. Finally, although the 8200 year B.P. event has been implicated in decreasing North Atlantic ventilation, and hence widespread temperature depression on land and at sea, we find inconsistent evidence for a change at that time in deep ocean nutrient content at ∼4 km water depth.Funding for JPS was from the NOAA Climate and Global Change Program (NA 16GP2679), NSF-Earth System History (0116940), the Jeptha H. and Emily V. Wade Award for Research, and a Henry L. and Grace Doherty Professorship. LDK and YR were funded by NSF grant OCE-0117149
    corecore