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The Neuse River estuary in North Carolina (Figure 1) is 
a typical example of a stressed coastal system. The 
estuary has been experiencing characteristic symptoms 
of nutrient overload including excessive algal blooms, 
low levels of dissolved oxygen, large fish kills, and 
outbreaks of toxic microorganisms (Burkholder et al., 
1995; Paerl et al., 1998). These problems have been 
attributed to the high nutrient loading that generally 
results from the kinds of changes that have occurred in 
the watershed over the past several decades (NC Senate 
Select Committee on River Water Quality and Fish 
Kills, 1996; McMahon & Woodside, 1997) .  The upper 
portion of the Neuse River drainage basin includes 
much of North Carolina’s Research Triangle (defined 
by the cities of Raleigh, Durham, and Chapel Hill), an 
area that has experienced economic prosperity and rapid 
population growth since the 1970s.  Population 
expansion and development are also occurring in lower 
portions of the basin with an increasing coastal 
population and a growing commercial hog-farming 
industry.  Municipal wastewater treatment plants, urban 
runoff, and confined animal feeding operations, together 
with agricultural fertilizers, are considered to be major 
sources of nutrients in the Neuse watershed. 
 
Violation of the chlorophyll a standard and growing 
public concern over water quality led the North Carolina 
Division of Water Quality (NC DWQ) to list the Neuse 
River estuary as an impaired water body under Section 
303(d) of the Clean Water Act.  Once a water body is 
listed on the Federal 303(d) list, the state must identify 
the pollutant causing the water quality impairment (in 
this case, chlorophyll a standard violations) and then 
develop a total maximum daily load (TMDL) for that 
pollutant.  TMDLs are quantitative estimates of the 
pollutant loading that will still allow the water body to 
meet its water quality standards (while incorporating a 
“margin of safety”). The impaired condition of waters 

across the nation underlies the requirement that 
thousands of TMDLs for pollutants must be developed 
in the next ten years (NRC, 2001).  As in many other 
marine systems, nitrogen has been identified as the 
pollutant of concern in the Neuse estuary because it is 
the nutrient believed to be stimulating the excessive 
algal growth that is the root of other eutrophication 
symptoms.  Therefore the TMDL management decision 
to be made is: What percent nitrogen reduction is 
required to bring the estuary into compliance with the 
chlorophyll a water quality standard?  Also of general 
interest is: How will these reductions address the 
concerns of the public?  As in most such cases, because 
reducing nitrogen loading comes at an economic cost to 
some of the affected stakeholders, there are conflicting 
objectives influencing this decision. 
 
UNCERTAINTY IN WATER QUALITY 
MODELING AND MANAGEMENT 
 
For years after the passage of the 1972 Clean Water Act 
(CWA), the cornerstone of EPA strategy for surface 
water quality management was a phased schedule of 
increasingly stringent point source discharge controls 
through the National Pollutant Discharge Elimination 
System (NPDES).  While water quality standards were 
established by the states, and total maximum daily loads 
were proposed in the 1972 CWA, point source controls 
were emphasized to achieve the goal to eliminate 
pollutant discharges to navigable waters by 1985.  The 
consequences were less emphasis on the linkage 
between pollutant sources and effects, and a diminished 
need for water quality modeling because NPDES 
permits were typically technology, rather than water-
quality, based.  However, recent emphasis on the 
TMDL program as the focus of surface water quality 
management has greatly expanded the need for reliable 
water quality models. 
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To develop an effective TMDL, all significant sources 
of the pollutant must be identified, and predictive 
linkages must be established between the identified 
sources of pollution and the water quality standard 
variable. With the emergence of the TMDL program, it 
has been believed that mathematical water quality 
models would provide the scientific basis to quantify the 
pollutant-effect relationship.  While models of 
increasing complexity have been developed and applied 
in the intervening years, there is increasing evidence 
that little confidence can be attached to the predictions 
of such models (NRC, 2001).  One problem is that these 
detailed process-based models are over parameterized, 
meaning the model parameters cannot be uniquely 
determined from available data.  This situation forces 
modelers to select parameter values from technical 
guidance documents (Bowie et al., 1985) with perhaps 
some ad hoc revision based on a visual comparison of 
predictions and observations.  However, parameter 
values, such as reaction rates, are variable and depend 
on the spatial and temporal scale of observation (Adams 
& Reckhow, 2001).  Choosing a single parameter value 
that is appropriate for the scale of the model application 
is problematic. 
 
Indeed, while calibration studies may sometimes show a 
close fit between predictions and the observations to 
which models are calibrated, verification studies against 
different sets of data suggest that prediction errors may 
be large, particularly for models of higher resolution 
and greater mechanistic detail (Reckhow, 1994).  This 
result should not be surprising, considering the 
complexity of natural systems relative to even the most 
sophisticated simulation models.  We cannot possibly 
define all the mechanisms of aquatic systems and expect 
to construct accurate models based on a complete 
understanding of all parts (Pace, 2001).   
 
Additionally, there is an increasing recognition that 
ecosystems behave as complex adaptive systems (Levin, 
1999).  Forecasting behavior in complex aquatic 
ecosystems is an inherently uncertain endeavor 
(Huisman & Weissing, 2001).  Reconciling the 
proportion of the variance of future behavior that is 
predictable in complex ecosystems is an emerging 
frontier for researchers (Clark et al., 2001).  The 
remaining variance, which captures the unpredictable 
system behavior, should be regarded as information that 
is characterized, quantified, and conveyed to decision-
makers for explicit consideration in the decision process 
(Ludwig et al., 1993). 
 
ADAPTIVE MANAGEMENT  
 
Viewing environmental decisionmaking as a one-time 
event that will either succeed or fail depending on the 

predictive accuracy of a model may lead to management 
paralysis as decision-makers wait for better predictions.  
However, a large amount of uncertainty may be 
unavoidable, even with continued data collection and 
model development.  Therefore, the “wait and see” 
approach will be less valuable than we intuitively 
expect.  If instead we view decisionmaking as an 
ongoing, flexible process, preliminary actions can be 
taken that will improve our knowledge of system 
response and make simultaneous progress toward 
management objectives. After all, the true response of a 
natural system to management can only be learned 
through experience.  This “learning by doing” approach 
is a pragmatic attempt to deal with growth, change, new 
information, and imprecise forecasting.  This strategy, 
labeled “adaptive management,” should not be an ad 
hoc game of trial and error, but rather an articulated 
succession of judgment-based decisions, followed by 
implementation, feedback, and readjustment (Holling, 
1978; Walters, 1986).  A flexible, updateable model that 
quantifies information on uncertainty can serve as the 
organizing principle behind this set of actions. 
  
BAYESIAN PROBABILITY NETWORKS 
 
The need for scientific modeling that will support 
adaptive decision-making under uncertainty suggests 
the use of a decision-analytic tool called a Bayesian 
probability network (Reckhow, 1999).  Also known as 
causal networks, belief nets, Bayes nets, and influence 
diagrams, probability networks are graphical models 
that depict the nature of relationships among a number 
of uncertain variables.  These relationships are 
quantified using models, data, or expert opinion that 
capture the aggregate effect of the dominant processes.  
The effects of secondary processes are summarized with 
probabilistic expressions.  Such models  are a more 
honest representation of our true knowledge of natural 
systems than deterministic simulation models that strive 
to include processes at very fine scales, offering the 
illusion of precision. 
 
Fundamental to developing and using probability 
networks is depicting the model as a graph.  In the 
graph, round nodes represent important system 
variables, and an arrow from one node to another 
represents a dependency between the corresponding 
variables. These dependencies may reflect causal 
relationships or the aggregate effect of more complex 
associations.  For example, the classic phosphorus 
loading approach, successfully used to anticipate and 
control lake eutrophication in the 1970s (Chapra, 1980), 
can be described by a simple probability network 
(Figure 2).  Algal density, measured by chlorophyll a 
concentration, is dependent on in-lake phosphorus 
concentration, which in turn is dependent on phosphorus 
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loading and lake depth.  The interesting point that is 
made explicit in the graph is that once the value of 
phosphorus concentration is known, the values of depth 
and phosphorus loading are not required to predict 
chlorophyll concentration.  This conditional 
independence indicated by the lack of a connecting 
arrow between depth or phosphorus loading and 
chlorophyll concentration greatly simplifies the 
modeling process by allowing separate submodels to be 
developed for each conditional relationship.  As in the 
original phosphorus loading approach, these submodels 
may represent any combination of process-based 
equations, statistical relationships, or expert judgment.  
However, unlike most integrated water quality 
modeling, probability networks make the assessment of 
uncertainty explicit by using probabilistic, rather than 
deterministic, representations.  Each relationship 
indicated by an arrow in a probability network is 
quantified by a conditional probability distribution that 
describes the relative likelihood of each value of the 
down-arrow node, conditional on every possible 
combination of values of its predecessors.  A node that 
has no incoming arrows is said to have no predecessors, 
and such a variable can be described probabilistically by 
a marginal (or unconditional) probability distribution.  
 
The use of an inherently probabilistic model to represent 
a complex physical process may initially be 
uncomfortable to both scientists and decision-makers.  
However, one must take the view that, “the probabilistic 
model is a model, not of the physical process itself, but 
rather a coherent set of beliefs about it.  Those beliefs 
incorporate knowledge of the physical process when 
that knowledge exists, but focus more on linkages 
among physical processes about which deterministic 
knowledge does not exist, but experience and opinion 
do.  Such models therefore represent a compromise 
between pure judgment in probabilistic form and 
deterministic modelling” (Abramson et al., 1996). 
 
This philosophy is consistent with the Bayesian 
approach to inference and decision (Winkler, 1972) 
which combines the formal properties of probability 
theory with the belief that probabilities, rather than 
being a physical trait of the system, are a way of 
expressing one’s degree of knowledge about the system.  
With this view, key known or expected relationships 
can be represented without the full complexity, or 
information needs, of process-based models.  Any 
additional variability or uncertainty not resulting from 
known processes is then described by probabilistic 
expressions that are either assessed using historical 
relative frequencies or the elicited judgment of an 
expert.  The use of expert opinion is a common trait of 
Bayesian modeling and well-developed protocols exist 

for eliciting such opinions in probabilistic form 
(Morgan & Henrion, 1990; Meyer & Booker, 1991). 
 
The domain of water quality modeling and management 
is ideally suited for the application of probability 
networks. Water quality data are often abundant, but not 
at the spatial and temporal scale required by detailed 
simulation models.  Scientific understanding of 
mechanisms is advanced, but only to the point of being 
able to identify the existence of aggregate causal 
relationships, not to quantify all of the small-scale 
dynamics.  Physical, chemical, and biological processes 
in aquatic environments are complex and chaotic, 
making representation by probability distributions 
appropriate.  Probability networks provide a 
methodology for combining expert knowledge of causal 
structure and aggregate ecosystem response with 
condensed models that are identifiable from available 
data.  The formal structure of a network makes the 
reasoning and assumptions of the analysis explicit, so 
that they can be challenged and revised as necessary.  
The probabilistic predictions give stakeholders and 
decision-makers a more honest appraisal of the chances 
of achieving desired outcomes.  The result is an 
integrative model that can be used effectively within an 
adaptive decision-making process. 
 
BAYESIAN NETWORK FOR THE NEUSE 
ESTUARY 
 
A Bayesian probability network model has been 
developed for the Neuse Estuary eutrophication problem 
(Borsuk, 2001) (Figure 3).  Predictive endpoints include 
algal density, as measured by chlorophyll a 
concentration, abundance of the toxic microorganism 
Pfiesteria, fish population health, frequency of fish kills, 
and shellfish abundance. Because intermediate variables 
and relationships are included in the model only if they 
contribute to our ability to predict model endpoints, the 
model structure can be best explained by starting with 
the endpoints and proceeding in the “up-arrow” 
direction. 
 
As revealed by a stakeholder study (Borsuk et al., 
2001a), fish kills are an attribute of significant interest 
to the public and decision-makers of the Neuse basin.  
The current scientific belief is that fish kills are 
predominantly caused by a combination of low oxygen 
bottom water (hypoxia) and wind conditions which 
force that bottom water to the surface, trapping fish 
along the shores where they suffocate (Crowder, 1998).  
Fish are generally more susceptible if they are already 
in poor health.  Therefore, a probabilistic prediction of 
fishkills depends on the health of the fish population, 
the temporal extent to which the estuary experiences 
hypoxic conditions, and the frequency of cross-channel, 
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“trapping” wind conditions.  The frequency of cross-
channel winds can be considered to be a marginal node, 
without parents, since historical data and observation 
exist on their occurrence, but, they cannot be controlled 
by management.  Prediction of the temporal extent of 
hypoxia, however, is conditional on the pattern of 
bottom water oxygen concentrations.  Oxygen 
concentration is determined by both the rate of sediment 
oxygen consumption by bacterial respiration and the 
duration that the bottom waters are separated from the 
surface due to salinity stratification (Stanley & Nixon, 
1992; Paerl et al., 1998).  It is generally believed that 
stratification occurs whenever cross-channel winds are 
calm enough to avoid mixing for more than one day 
(Luettich, 1998).  Therefore, a variable describing the 
number of consecutive days between winds of sufficient 
strength to mix the system is the only variable relevant 
to stratification.  This variable, like fish kills, is 
dependent on the frequency of strong cross-channel 
winds.  Freshwater flow into the estuary may also 
influence the strength (and, therefore, duration) of 
stratification (Luettich, 1998), but its overall effect is 
not clear at this time.  Therefore, the effect of flow has 
not been included. 
 
Sediment oxygen demand is dependent on the decay 
rate of organic matter in the sediments, which, in turn, is 
dependent on the amount of organic matter available 
(Rizzo & Christian, 1996).  In a eutrophic estuary such 
as the Neuse, most of the sediment organic matter is 
believed to be internally derived via carbon fixation by 
algae, rather than externally derived via river loading of 
terrestrial material (Alperin et al., 1998).  Because 
regular measurements are not made of the organic 
matter decay rate or the sediment organic carbon 
content, these intermediate steps are not included in the 
model, and a direct link is shown between sediment 
oxygen demand and algal carbon production.  This is an 
instance where the aggregate effect may be more well 
known than the sum of a number of individual, 
uncertain processes.   
 
Algal carbon production is primarily determined by 
algal density, although water temperature also plays an 
important role (Mallin et al., 1991).  Additionally, light 
intensity and photic depth have been shown to be 
significant factors (Cole & Cloern, 1987; Boyer et al., 
1993).  However while these are both observable 
variables (in that they can be measured), they are neither 
manageable by nitrogen controls nor predictable from 
other known factors (as water temperature is from the 
seasonal cycle).  Therefore they are not explicitly 
included, and the variability they cause becomes part of 
the model uncertainty. 
 

Among the factors believed to control algal density are 
nitrogen inputs and water temperature (Pinckney et al., 
1997).  Additionally river flow has been shown to be an 
important factor (Mallin et al., 1993), perhaps because 
of its influence on estuarine salinity and water residence 
time.  Detailed measurements of water temperature, 
river flow, and river nitrogen concentration exist, 
making these suitable marginal nodes.  To test the 
effects of future nitrogen reductions with the model, 
river nitrogen concentrations were adjusted accordingly.  
Another model endpoint is fish population health 
(Figure 3).  While a number of factors affect the health 
of the Neuse estuary fish population, only the harmful 
effects of hypoxia can be controlled through nitrogen 
reductions.  The situation is similar for shellfish.  
However, because shellfish are sessile, it is not only 
their health, but their abundance, that is threatened by 
long term exposure to low oxygen conditions.  Thus, 
both the duration and severity of hypoxia are important 
considerations, prompting the arrows from nodes 
representing both duration of stratification and dissolved 
oxygen concentration. 
 
The presence of the toxic dinoflagellate, Pfiesteria 
piscicida, is a concern to the public, in part, because of 
the large amount of media attention it has received in 
the past five years.  It has been blamed for a having a 
major role in the occurrence of fish kills both by directly 
attacking the fish and by making them more susceptible 
to harsh conditions (Burkholder, 1999).  Pfiesteria has 
also been found to adversely impact the health of 
laboratory researchers studying the organism by causing 
respiratory and neurological distress (Glasgow et al., 
1995). However, the potential threat to people exposed 
to Pfiesteria under natural conditions is highly 
controversial (Griffith, 1999), and the distinct role the 
organism plays in fish kills is uncertain (Stow, 1999).  
Many of the scientists we spoke with felt that Pfiesteria 
was just one of many stressors that fish faced, and if 
Pfiesteria were not present in the estuary, other 
opportunistic organisms would be.  Therefore, to satisfy 
the interests of the stakeholders, Pfiesteria abundance 
was included as an endpoint in the model, but it was not 
linked to fish population health or fishkills.  Nor was a 
human health effect included.  Perhaps as more 
laboratory research, field-work, and health studies are 
conducted, the role of Pfiesteria in the network can be 
modified accordingly 
 
Development of the quantitative relationships among 
the variables in the probability network is described by 
Borsuk et al. (2001a, 2001b, 2001c, in review). 
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PROBABILITY NETWORKS FOR ADAPTIVE 
MANAGEMENT 
 
Development of the probability network was undertaken 
not to create a more realistic representation of the Neuse 
system, but rather to develop a model that more 
realistically represents our knowledge about that system.  
In particular, we wanted to represent current scientific 
knowledge about the linkage between nitrogen inputs 
and the ecosystem variables that are of interest to the 
public and decision-makers.  In this sense, the 
probability network should not be seen as a suggested 
replacement for other models, but rather as an integrator 
of many forms of knowledge, whether expressed as a 
process-based model, an empirical relationship, or a 
quantification of expert judgment.  To the extent that an 
existing complex simulation model appropriately 
represents our level of understanding about the 
functioning of the system, that model can be used as the 
basis for a set of dependencies in a probability network.  
However, because knowledge in all forms is inherently 
uncertain, and probability networks represent that 
uncertainty using conditional distributions, the 
predictive accuracy of the process description must be 
fully quantified.  While progress has been made recently 
in characterizing the uncertainty of complex models 
(Poole & Raftery, 2000; Brun et al., 2001; Kennedy & 
O'Hagan, 2001; Reichert et al., 2001), most commonly 
used water quality models have not undergone a 
rigorous uncertainty analysis (Reckhow, 1994).  
Therefore, when process models were used as an 
expression of knowledge in the probability network, 
they were applied at a considerably more aggregate 
scale. 
 
Rather than creating an elaborate model a priori and 
basing all subsequent decisions on predictions from that 
model, adaptive management emphasizes updating the 
model based on observation and learning as time passes. 
Updating the parameters in the probability network in 
response to observation, learning, and change over time 
is relatively straightforward using Bayes’ Theorem 
(Bernardo & Smith, 1994).  The parameter distributions 
developed in the current study can be used as the prior 
beliefs, to be combined with the likelihood derived from 
any new information, to result in an updated posterior 
distribution.  This distribution can then be used in the 
probability network, as well as to serve as the starting 
point for subsequent updates.  In turn, management 
actions can adapt based on results from the updated 
model. This process may involve repeated cycles of 
prediction, decision, management action, and 
evaluation.  Such an approach is particularly appealing 
in environmental applications where population growth, 
land use change, and variability in climatic forcing 

functions exceed the limited range of observation and 
experience.  
 
The probability network is structured to allow the 
uncertainty arising from random fluctuations to be 
separated, at least in part, from the uncertainty that 
arises from knowledge uncertainty in the form of 
uncertain parameter values.  This is important 
information for decision-makers.  Stochastic variability 
is a property of the system that must be accounted for 
but, for a given model, cannot be reduced.  Knowledge 
uncertainty, on the other hand, can generally be reduced 
through the gathering of additional information 
(Hession & Storm, 2000).  Estimates of the net benefit 
of such information using expected value theory can 
provide the basis for choosing preliminary actions or 
data collection that will be most valuable (Clemen & 
Reilly, 2001).   
 
CONCLUSIONS 
 
The probability network is one of several estuarine 
response models currently being used to inform the 
near-term selection of a TMDL for the Neuse River.  
Compared to the other models, its process-
representation is simple.  Complex physical, chemical, 
and biological processes are combined into aggregate 
components described by measurable, operationally 
defined variables.  The model does not invoke more 
detail than necessary, emphasizing the fact that it should 
not be considered an attempt to describe all the 
processes operating in the system, but instead is a 
simplification for a specific purpose.  In this case, the 
purpose is to serve as a framework for decision-making 
by organizing current scientific understanding and 
assumptions.  By focusing on attributes of the system 
that are meaningful to the public and decision-makers, 
the model provides the opportunity for hydrodynamists, 
chemists, and biologists to understand the linkages that 
are required between their research fields to develop 
meaningful environmental policy. The probability 
network can incorporate both quantitative and 
qualitative information, facilitating the practical 
integration of information from the multiple 
contributing fields.   
 
Ecosystem management requires the prediction of 
ecosystem responses to alternative management actions.  
There are essentially four tools to guide such 
predictions: 1) microcosm experiments, 2) mesocosm 
experiments, 3) whole-ecosystem experiments, and 4) 
numerical experiments (models), all of which are 
imperfect, imprecise, or impractical.  The concept of 
adaptive management was developed with the 
recognition that our ability to predict the response of 
ecosystems to management actions is inherently 
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uncertain.  However, management actions can be 
regarded as ecosystem-scale experiments that provide 
an opportunity to learn about system behavior and 
reduce uncertainty.  Information from monitoring 
studies can then be formally assimilated into our 
knowledge base using Bayes theorem (Reckhow, 1990).   
While the concept of adaptive management is not new, 
to our knowledge the water quality literature contains no 
examples where it has been explicitly applied within a 
rigorous framework for assimilating new data and 
updating model information and predictions.  A 
Bayesian probability network is an ideal framework for 
implementing adaptive management and, with 
appropriate follow-through; the Neuse River TMDL 
will be an excellent test case.   
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