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a b s t r a c t

In a world of increasing interconnections in global trade as well as rapid change in climate and land
cover, the accelerating introduction and spread of invasive species is a critical concern due to associated
negative social and ecological impacts, both real and perceived. Much of the societal response to invasive
species to date has been associated with negative economic consequences of invasions. This response has
shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense
ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often
ignores the concept of ecological resilience and associated approaches of resilience-based governance.
We argue that the relationship between ecological resilience and invasive species has been understudied
to the detriment of attempts to govern invasions, and that most management actions fail, primarily
because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease
resilience by reducing the biodiversity that underpins ecological functions and processes, making eco-
systems more prone to regime shifts. However, invasions do not always result in a shift to an alternative
regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions
or adding redundancy that strengthens already existing structures and processes in an ecosystem. This
paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests
that resilience-based approaches can inform policy by linking the governance of biological invasions to
the negotiation of tradeoffs between ecosystem services.

© 2016 Published by Elsevier Ltd.

1. Introduction

Biological invasions are a common, inescapable part of a glob-
alized world that is continuously modified. Human activity inten-
tionally and unintentionally influences species distributions,
introducing species to new environments including degraded and
modified environments susceptible to biological reorganization
(Rahel and Olden, 2008). Invasive speciesdnon-native species that
geographically spread and increase in abundance following initial

* Corresponding author.
E-mail addresses: brian.chaffin@umontana.edu (B.C. Chaffin), garmestani.

ahjond@epa.gov (A.S. Garmestani), david.angeler@slu.se (D.G. Angeler), herrmann.
dustin@epa.gov (D.L. Herrmann), craig.stow@noaa.gov (C.A. Stow), magnus.
nystrom@su.se (M. Nystr€om), jan.sendzimir@boku.ac.at (J. Sendzimir), hopton.
matthew@epa.gov (M.E. Hopton), kolasa@mcmaster.ca (J. Kolasa), callen3@unl.
edu (C.R. Allen).

Contents lists available at ScienceDirect

Journal of Environmental Management

journal homepage: www.elsevier .com/locate/ jenvman

http://dx.doi.org/10.1016/j.jenvman.2016.04.040
0301-4797/© 2016 Published by Elsevier Ltd.

Journal of Environmental Management 183 (2016) 399e407

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:brian.chaffin@umontana.edu
mailto:garmestani.ahjond@epa.gov
mailto:garmestani.ahjond@epa.gov
mailto:david.angeler@slu.se
mailto:herrmann.dustin@epa.gov
mailto:herrmann.dustin@epa.gov
mailto:craig.stow@noaa.gov
mailto:magnus.nystrom@su.se
mailto:magnus.nystrom@su.se
mailto:jan.sendzimir@boku.ac.at
mailto:hopton.matthew@epa.gov
mailto:hopton.matthew@epa.gov
mailto:kolasa@mcmaster.ca
mailto:callen3@unl.edu
mailto:callen3@unl.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jenvman.2016.04.040&domain=pdf
www.sciencedirect.com/science/journal/03014797
http://www.elsevier.com/locate/jenvman
http://dx.doi.org/10.1016/j.jenvman.2016.04.040
http://dx.doi.org/10.1016/j.jenvman.2016.04.040
http://dx.doi.org/10.1016/j.jenvman.2016.04.040
proyster2
Text Box
This document is a U.S. government work and is not subject to copyright in the United States.




establishment (Lodge et al., 2006)dby affecting ecological pro-
cesses (Gandhi and Herms, 2010), engineering ecosystem structure
(Crooks, 2002) or affecting community dynamics (Yurkonis et al.,
2005), can significantly alter ecosystem structure and function
that may result in a significant alteration in the provision of
ecosystem services. Although there has been a recent shift toward
prevention of invasions (Cook et al., 2010; Simberloff, 2013),
traditional approaches to managing invasions have been largely
reactionary in nature, with a focus on control through mitigation
and eradication (Keller et al., 2007; Foxcroft and McGeoch, 2011).
This control approach grew out of a dominant narrative that in-
vasions are ecologically, economically and culturally undesirable,
and has been reinforced bymany documented cases of detrimental,
and often highly visible, impacts (Keller et al., 2007).

This traditional view of invasions and associated approaches to
management have become increasingly contested as economically
inefficient, ecologically (and evolutionarily) ineffective and poten-
tially undesirable in many cases (Angeler et al., 2012; Allen et al.,
2013; Lotz and Allen, 2013). Some invasions may have neutral or
positive outcomes (both real and perceived) (e.g., Sax et al., 2002),
because they either reinforce specific ecosystem functions or pro-
vide economic benefit (e.g., Thomsen, 2010; Wallach et al., 2015;
Weigel et al., 2016). Failed invasions or those with neutral ecolog-
ical outcomes may in fact be more common than what has been
reported, because invasions with detrimental ecological or eco-
nomic effects are more likely to be published than studies reporting
non-significant effects (Levine and D'Antonio, 2003). Even some
invasions initially labeled as socially undesirable may be beneficial
to some degree because they provide opportunity to gain a deeper
understanding of complex system dynamics (e.g., Bertness and
Cloverdale, 2013). Though scientific understanding and techno-
logical innovation has and will advance to further support a “detect
and eradicate” approach for some invasive species (Simberloff,
2013), new conceptual frameworks for managing invasions are
required to address the complexity of invasions (Ricciardi and
Atkinson, 2004) especially given the rapid increase in ecological
and socioeconomic uncertainties associated with global change.

The concept of ecological resilience, defined as the capacity of a
system to withstand change while maintaining processes and
structures (Holling, 1973), offers a rich theoretical frame for un-
derstanding invasions. In addition, ecological resilience and related
concepts can serve as a bridge to new approaches to invasive spe-
cies management with a focus on understanding ecosystem dy-
namics as opposed to controlling a single species (Angeler et al.,
2015a). Resiliencedas a property of complex systemsdhas
inspired a series of theoretical advancements in approaches to
governing interactions between society and biophysical systems
(Gunderson et al., 2005; Folke, 2006). In this context, ‘governance’
describes the “social and political process of defining goals for the
management of [social-ecological systems] and resolving trade-
offs, and management is defined as the actions taken to achieve
these goals and includes monitoring and implementation” (Biggs
et al., 2012 citing Pahl-Wostl, 2009). Gaining an understanding of
biological invasions in terms of ecological resilience allows for the
deliberate engagement with resilience-based approaches to
governance (Garmestani and Benson, 2013) that can coordinate the
management of invasive species at scales relevant to ecosystems,
ecosystem function and the provision of ecosystem services,
instead of at anthropocentric scales such as political and jurisdic-
tional boundaries.

In this paper we highlight the potential of adaptive governance,
a resilience-based approach that shifts the focus of governance and
management actions from reactions toward a single species inva-
sion to a more holistic view of the functional role of invasions in
ecosystems. We frame adaptive governance as an approach to

managing tradeoffs between ecosystem services, recognizing that
the role of invasions in these complex processes may not always be
spatially or temporally apparent. Our goal is that this synthesis of
scholarship will be a bridge to policy to inform both future
empirical research on biological invasions as well as practical ap-
plications of resilience-based governance approaches to managing
invasive species and associated effects on ecosystem services and
human wellbeing.

2. Ecological resilience and biological invasions

The concept of ecological resilience emphasizes non-linear
change in ecological systems, more specifically, the existence of
alternative regimes (Holling, 1973). Once a disturbance threshold is
passed, a system can undergo a shift characterized by a relatively
abrupt change in structuring processes, reorganizing into a new
regime dominated by a different set of processes, structures,
functions and feedbacks (represented in the adaptive cycle of
complex systems (Holling, 1986); Fig. 1). Undergoing such a regime
shift may be unlikely if the system is resilient to the influence of
disturbance events (i.e., structuring processes are reinforced by
social-ecological feedbacks and cross-scale interactions) (Nystr€om
et al., 2012). However, system-reinforcing feedbacks can be weak-
ened with the addition of novel species, such is the case with
biological invasions. Biological invasions can influence ecosystem
resilience and threshold dynamics, potentially triggering regime
shifts.

In this sectionwe review biological invasions from an ecological
resilience perspective, paying particular attention to literature that
highlights the importance of scale, invasion success and the role of
invasions in building and eroding the resilience of ecosystem
regimes.

2.1. Scale

Explicit to the concepts of ecological resilience is a cross-scale
view of ecosystem structure and dynamics (Garmestani et al.,
2009). Scale-specific interactions between patterns and processes
and biotic-abiotic feedbacks provide systems with their

Fig. 1. A representation of an adaptive cycle. The arrows indicate the speed of the cycle
where short, closely spaced arrows indicate a slowly changing state and long arrows
indicate a rapidly changing state. The cycle reflects changes in two properties: (1) Y
axisdthe potential that is inherent in the accumulated resources of biomass and nu-
trients; (2) X axisdthe degree of connectedness among controlling variables. Low
connectedness is associated with diffuse elements loosely connected to each other
whose behavior is dominated by outward relations and affected by outside variability.
High connectedness is associated with aggregated elements whose behavior is
dominated by inward relations among elements of the aggregates, relations that
control or mediate the influence of external variability. Opportunities for invasion are
heightened as the cycle transitions from the Omega phase into the onset of the Alpha
phase (shown in lighter coloration). Adapted from Panarchy: Understanding Trans-
formations in Human and Natural Systems, L.H. Gunderson and C.S. Holling, eds.
Copyright © 2002 by Island Press.
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characteristic structure, function and resilience. These sets of
structures and functions differ across spatial and temporal scales in
a system (Allen et al., 2006) with functional linkages between
scales allowing changes in structure and function at one scale to
have potential consequences at higher and lower levels of
ecosystem organization. Biological invasions provide clear exam-
ples of novel species affecting processes and structures at a
particular scale with broader cross-scale effects on ecosystems that
ultimately lead to a regime shift. Two examples of this include the
American red swamp crayfish (Procambarus clarkii), introduced and
invasive in Europe and Asia, and the common carp (Cyprinus car-
pio), invasive in the USA and many locations worldwide. These
species have contributed to regime shifts in shallow lakes and
wetlands from clear-water to turbid regimes (Matsuzaki et al.,
2009). Both species indirectly destabilize shallow lake sediments
through burrowing and foraging behaviors (i.e., consuming and
mechanically damaging submerged vegetation). Reduced vegeta-
tion cover together with re-suspension of sediment (and nutrients
from both mechanical action of soil disturbance and decay of
damaged vegetation) ultimately destabilizes critical feedbacks that
reinforce the clear-water regime, causing a shift to an alternative,
turbid regime (Matsuzaki et al., 2009).

The resilience of ecological regimes, including key ecological
processes, depends on the distribution of function within and
across scales (Peterson et al., 1998). If species of the same functional
group operate at different temporal and spatial scales, they provide
mutual reinforcement that contributes to the resilience of a func-
tion (i.e., redundancy) (Walker, 1992), while minimizing competi-
tion among species within the functional group. Resilience is
enhanced by imbrications of ecological function among species of
different functional groups that operate at the same scales and the
response diversity of members of the same functional group within
scales (Elmqvist et al., 2003; Carpenter et al., 2006). This cross-scale
resilience provides insurance against the inevitable ‘surprises’ (e.g.,
drought, floods, disease, etc.) that affect ecosystems at multiple
scales (Fischer et al., 2006). Cross-scale interactions can be critically
influenced by invasive species, and the cross-scale resilience model
(Gunderson and Holling, 2002; Allen et al., 2014) provides a
framework for further understanding the relationship between
invasions and resilience, which in turn can lend insights to in-
teractions between ecological scales and scales of governance
(Green et al., 2014).

2.2. Resilience and invasion success

An interesting pattern arising from studies that have investi-
gated biological invasions from the perspective of cross-scale
structure is that successful invasive species occur non-randomly
in relation to discontinuities in body size distributions (Fig. 2)
(Allen et al., 1999). In particular, successfully introduced non-
indigenous species occur at the edges of body size classes (Allen
et al., 1999), which indicate proximity of a species' ecological
niche to scale transition zones. These zones are highly variable in
terms of biotic and abiotic processes (Wiens, 1989; Allen and
Holling, 2010), and are also associated with other phenomena
reflecting biological variability, for example: species extinctions or
turnover in the community (Allen et al., 1999); higher population
fluctuations (Wardwell and Allen, 2009); and decreasing fitness of
individuals within a population (Angeler et al., 2014). Species un-
successful as invaders, alternatively, tend to have body masses that
place them in the middle of size classes (Allen, 2006).

The success of invasions in many cases can also be related to the
phase of the adaptive cycle (Fig. 1) displayed by the ecosystem in
which the invasion occurs (see Holling, 1986). For example, in-
vasions may not be successful when ecosystems are in the mature

phase (i.e., in the k-phase of an adaptive cycle) where the niche that
an invasive species could exploit is occupied by relatively resilient,
resident species. However, the reorganization phase of an adaptive
cycle provides a greater opportunity for invasive species to colonize
an ecosystem (Fig. 2). It is important to consider that components
of an ecosystem can be at different phases of the adaptive cycle and
adaptive cycles are nested, meaning that they can display different
phases at multiple scales simultaneously. Therefore, invasions can
take place at different spatiotemporal scales, mediated by the
ecological conditions and processes that characterize each scale. In
addition to opportunity during reorganization phases of adaptive
cycles, the variability inherent between scales provides heightened
variability in resources. This variability can reflect windows of
ecological opportunity in the ecosystem that may be exploited by
invasive species.

2.3. Invasive species: building or eroding resilience?

Despite the consistently applied human narrative of invasions as
negative perturbations, invasions are a potential source of novelty,
renewal and innovation in ecosystems. Although novelty and
innovation can be critical determinants of complex systems dy-
namics, the consequences of the introduction of novelty and
innovation can have varying and disparate effects on ecological
resilience depending on context (Gunderson and Holling, 2002). In
the same way that genetic mutations affect organisms, invasions
can be a source of adaptation or critically destructive in an
ecosystem (Allen and Holling, 2010). As such, invasive species are
critical for understanding resilience in ecosystems, but also pose an
apparent paradox. Invasive species may be incorporated function-
ally into existing ecosystem processes and structure with little
alteration to extant ecosystem dynamicsdeven potentially
enhancing resilience of a regime to avoid regime shiftsdor the
addition of invasive species may erode resilience causing a trans-
formation in ecosystem structure and function (Almaraz and Oro,

Fig. 2. A representation of a panarchy. A panarchy consists of adaptive cycles (Fig. 1)
occurring at different scales of space and time (three dominant scales are represented
in this Figure). The three adaptive cycles in the panarchy illustrated provide three
discrete scales of opportunity for species to exploit; this is manifest in body mass
distributions characterized by aggregations (3) separated by discontinuities. Oppor-
tunities for invasion are heightened at the highly variable transition zones between
adaptive cycles, manifest as discontinuities in body mass distributions. Additionally,
collapse and subsequent reorganization of a panarchy (a regime shift) offers additional
opportunities for invasion. Note that the cycles at lower levels occur at smaller spatial
scales and are much faster, which the Figure illustrates metaphorically by varying the
adaptive cycle size. Adapted from Panarchy: Understanding Transformations in Human
and Natural Systems, L.H. Gunderson and C.S. Holling, eds. Copyright © 2002 by Island
Press.
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2011).
Invasions can also facilitate the recovery of a socially desirable

ecosystem regime (Jain and Krishna, 2002); for example, the in-
vasion of the European green crab (Carcinus maenas) into degraded
salt marshes along Cape Cod in New England, USA (Bertness and
Cloverdale, 2013). Overfishing of native predator populations
resulted in greatly increased densities of native herbivorous marsh
crab (Sesarma reticulatum) populations. Larger Sesarma populations
created marshes denuded of vegetation, and these denuded
marshes were maintained in the continued absence of predators.
The invasive generalist predator Carcinus invaded the denuded
marshes as it was able to use the same small burrows as Sesarma,
and through direct and indirect predation reduced herbivory by
Sesarma. In the absence of heavy herbivory, marsh grasses were
able to reestablish the previous ecological regime (Bertness and
Cloverdale, 2013).

Another possible outcome of invasions is that invasive species
can strengthen the resilience of the regime existing at the time of
invasion (regardless of whether or not the regime is ‘desirable’ for
humans). In this case, introduced species reinforce functions
already present in the ecosystem. Maintenance of functions within
and across spatial and temporal scales, despite potential changes in
community composition resulting from invasion, helps to maintain
resilience of the invaded ecosystem. The invasive species simply
adds to the suite of species providing a specific function (i.e.,
redundancy), and if extinction occurred, the invasive species may
be functionally equivalent. An example of this scenario is the
vertebrate fauna of the Everglades region in south Florida, USA.
Since the 1950s vertebrates in the Everglades have experienced
declines in the abundances of native species, with as much as 25%
of the vertebrate fauna declining (Forys and Allen, 2002). Declining
species span the size range of extant vertebrates (and therefore
represent a diversity of functions over multiple scales). The species
that have successfully invaded south Florida have a great range in
bodymass (and size classes), and thus are present at multiple scales
(and multiple size classes). However, the overall distribution of
function within and across scales is largely unchanged despite ex-
tinctions and invasions, and therefore it is likely that the resilience
of the system is relatively unchanged (Forys and Allen, 2002). In-
vasions can replace native species, but do not reduce functional
group richness within scales or reduce ecological function across
scales (Forys and Allen, 2002). Despite a fundamental change in
community composition, the pattern of ecological function within
and across scales has been conserved in the Everglades vertebrate
community.

Resilience can also be increased by invasive species because
structural and functional feedbacks are not only reinforced, but
strengthened. The resultant system regime is more likely to absorb
stress and disturbances, decreasing the likelihood of undergoing a
regime shift. Building resilience can occur when invasive species
contribute novel functions that were not present in the ecosystems
prior to the invasions. An example of this is the invasive common
reed (Phragmites australis) that has been rapidly invading rivers in
the western USA. In the Platte River of the Great Plains (Nebraska,
USA), the invasion of Phragmites has altered geomorphic processes
such as sandbar movement (Nemec et al., 2014). This represents an
alternate regime of the system, and an undesirable one for many
reasonsdand thus the recipient of a $US 150 million government
expenditure for adaptive management of the river. Initially it was
thought that the limited management intervention of removing
cottonwoods (Populus deltoides) and willows (Salix spp.) could
recover lost geomorphic processes (e.g., sandbar movements).
However, the recent invasion of Phragmites has deepened a hys-
teresis effect, so that now extensive and intensive manage-
mentdPhragmites removal across the entire riparian corridor

combined with tree removal and trenching of the substrate to
remove root biomassdis required for the river to revert to its
previous regime. The Phragmites example is a case where a
sequence of multiple invasions of different species has contributed
to build the resilience of an altered regime. This example may also
describe an ecosystem previously altered by anthropogenic per-
turbations (e.g., contamination, land use change) unrelated to the
invasion under study; these antecedent conditions have provided
windows of opportunity for non-native species to successfully
invade and incrementally increase the resilience of an altered
regime.

Thus, resilience can be reduced by invasions, especially when an
invasive species alters structural and functional feedbacks among
key processes in an ecosystem causing it to shift to an alternate
regime (Table 1). Van Nes and Scheffer (2004) contend that in a
world where multiple regimes are possible, gradual changes in
environmental conditions (e.g., biological invasions) can reduce the
resilience of a desirable system regime. When resilience is low,
even a small stochastic perturbation provides a window of oppor-
tunity that can trigger a regime shift. For example, paperbark trees
(Melaleuca quinquenervia) were introduced to south Florida from
Australia for ornamental purposes (Serbesoff-King, 2003). These
trees have since become aggressive invaders in North America and
begun to dominate areas around the Everglades (Serbesoff-King,
2003). After Hurricane Andrew in 1992, Melaleuca spread at a
much greater rate into the Everglades likely as a result of disturbed
ecological conditions (Serbesoff-King, 2003). Similarly, coral reef
systems typically reorganize after disturbances such as hurricanes,
but in the face of increasing natural and human pressures, they can
reorganize into alternative regimes (Norstr€om et al., 2009).
Although invasive species have not been widely recognized as a
problem for coral reefs, invasive species are becoming an issue in
areas where reefs are already in decline (Graham et al., 2014). A
contemporary example are the Indo-Pacific lionfishes (Pterois vol-
itans and Pterois miles), which have spread across much of the
Caribbean since their detection in the early 1990s (Côt�e et al., 2013).
Lionfishes are highly successful competitors and predators of native
fishes (Green et al., 2012). Another example is the red macroalgae
(Gracilaria salicornia) that was introduced to Hawaiian coral reefs in
the 1970s. It has changed the structural complexity of some reefs
and caused smothering of many sessile benthic organisms
including corals (Martinez et al., 2012).

Invasions can also reduce resilience in less apparent ways. One
of the challenges of resilience theory in ecology is that resilience is
difficult to quantify, and subtle differences in resilience may not be
apparent until it is too late (i.e., an undesirable threshold has been
crossed). One source of resilience in systems is in the form of rare
species, which constitute an important form of adaptive capacity
(Angeler et al., 2015b). Rare and uncommon species may have
relatively little to do with the function of a systemduntil the dy-
namics of that system change (Walker, 1992). When a system is
stressed, by drought for example, formerly uncommon species may
become abundant, and become important functional drivers
(Walker et al., 1999). Therefore, invasions that come at the expense

Table 1
Potential impacts of biological invasions on the resilience of ecological systems.

Increase resilience Decrease resilience

Replace lost functions Loss of ecological function
Replace lost ecosystem services Loss of ecosystem services
Increase functional diversity Decrease in biodiversity
Increase cross-scale redundancy Change in disturbance patterns
Increase hysteresis Initiate trophic cascades
Strengthen feedbacks Decouple feedbacks
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of rare or uncommon species may have subtle but critically
important negative impacts on the adaptive capacity and resilience
of an ecosystem.

3. Governing biological invasions

The above review of biological invasions through the lens of
ecological resilience yields important insights for translating sci-
entific understanding to the action of governing invasions. For
example, knowledge of the nested spatial and temporal nature of
cross-scale interactions and the current phase of the ecosystem's
adaptive cycle, is critical to determine appropriate governance
mechanisms (and ultimately management actions) necessary to
maintain desired ecosystem regimes. In this section we review the
relationship between governance and biological invasions and
suggest the processes of adaptive governance as an appropriate
path forward.

The concept of environmental governance describes processes
through which society (e.g., networks of individuals, organizations
and related institutions) determines and prioritizes the use, allo-
cation and conservation of ecological resources. Environmental
governance aimed at building ecological resilience to avoid regime
shifts works toward either preserving a desired regime through
adaptation to disturbances (e.g., preventing or mitigating in-
vasions) or by facilitating the transformation of undesirable re-
gimes toward more desirable ones (e.g., reestablishing key
ecosystem services lost as a result of disturbance) (Olsson et al.,
2006). A resilience-based framing of environmental governance
can inform the choice of management strategies applied to achieve
a desired regime amidst complexity and uncertainty (Garmestani
and Benson, 2013; Chaffin et al., 2014), which includes managing
the impacts and interactions of biological invasions. ‘Adaptive
governance’ describes one resilience-based approach to environ-
mental governance with the potential to inform future efforts to
manage biological invasions (Cook et al., 2010).

3.1. Adaptive governance and adaptive management

Adaptive governance encompasses a range of formal and
informal interactions between individuals, organizations and in-
stitutions (e.g., laws, policies, informal rules, social norms)
“emerging in pursuit of a desired [regime]” for managing resilience
in social-ecological systems (Chaffin et al., 2014). Adaptive gover-
nance differs from purely state-based forms of environmental
governance in that it is not generally legislated for or explicitly
created through hierarchical, command-and-control government
processes. Instead, adaptive governance emerges from a novel
recombination of institutions and other available resources (e.g.,
leadership, funding, networks, trust, etc.) following a regime shift
at the social-ecological system-scale that has direct implications for
governance structures and processes (Chaffin and Gunderson,
2016). Crossed ecological thresholds often trigger societal crises.
For example, following a century of overfishing, a narrative of
environmental crisis emerged in response to the collapse in stocks
of the Atlantic cod (Gadus morhua) fishery that has historically
provided ample cod as a food sourceda desirable ecosystem ser-
vice (Harris, 2013). Narratives of crisis can provide the fodder for
the recombination of social capital in novel ways toward the
emergence of adaptive governance (Chaffin and Gunderson, 2016).
For example, mass bleaching of corals in the Great Barrier Reef
Marine Park fostered a sense of crisis among the Australian public
which influenced new legislation and a broader paradigm shift
aimed at managing the park more holistically and based upon a
better integration of knowledge on ecosystem dynamics (Olsson
et al., 2008). Similar crises may be triggered by invasions, which

are considered one of the main factors causing the current biodi-
versity crisis (Sala et al., 2000).

Transitions toward adaptive governance can be enhanced by
properly timed legislation or funding that 1) supports power
sharing amongst local resource users and management authorities,
and 2) fosters collaborative decision making inclusive of resource
users and groups affected by environmental decisionmaking (Dietz
et al., 2003; Folke et al., 2005). Adaptive governance represents a
shift away from inflexible, centralized government mechanisms
toward efforts that: are scaled or “fit” to the nature of ecological
problems in question (e.g., basin-scale for watershed related
problems) (Rijke et al., 2012); rely on multiple and overlapping
authorities and resources to legitimize decision making at more
local scales (e.g., redundancy) (Huitema et al., 2009); are focused on
system-wide learning and transparent knowledge sharing (Pahl-
Wostl et al., 2007); and use the structured processes of adaptive
management as a method for determining management actions
and subsequent adjustment of policy (Gunderson and Light, 2006).
Adaptive management is a structured, iterative process of envi-
ronmental management that allowsmanagers to make decisions in
the face of uncertainty, and fosters social learning through constant
monitoring of the system being managed (Holling, 1978; Allen and
Garmestani, 2015). Adaptive management is a structured process
for testing predictions against empirical data, and subsequently
recalibrating management actions at decision points in the adap-
tive process (Williams, 2011). The process of adaptive management
is operationalized by the flexible contexts of adaptive governance,
but is also essential for creating the transparent culture of learning
and information sharing that is required for resilience-based
governance of social-ecological systems (Folke et al., 2005;
Chaffin et al., 2014).

3.2. Invasions and adaptive governance

We are not the first to suggest an adaptive governance approach
to coordinating the management of biological invasions. Cook et al.
(2010) proposed a set of design principles for the adaptive gover-
nance of invasive species termed “biosecurity governance” with an
emphasis on efficiency of information flow and generation of
shared information through adaptive management throughout
networks of individuals and organizations managing invasive
species.

Cook et al. (2010) called for “overlapping complementary bio-
security response capabilities, [that] depart from centralist (or
linear) governance structures” and networks of biodiversity col-
lectives for increased attention to local detection and response. In
terms of biological invasions, the relevant spatial and temporal
scales of governance are invasion dependentdfor example, gov-
erning the ubiquitous spread of the invasive cheat grass (Bromus
tectorum) across the western USA would require a large-scale,
landscape approach to governance involving multiple jurisdic-
tions, multiple scales of resource users and multiple levels of gov-
ernment. Foxcroft and McGeoch (2011) suggested adaptive
governance as an ideal umbrella policy to coordinate management
of invasions across multiple spatial scales and a diverse set of in-
stitutions, organizations and authorities. In both cases, the authors
were right to call for a more flexible, inclusive process of managing
invasions that mirrors the theoretical principles of adaptive gov-
ernanced“the associated rigidity [of current approaches to gov-
erning invasions] does not always allow for the surprises that are
common features in dynamic ecological systems” (Foxcroft and
McGeoch, 2011). Ideally, the contexts of adaptive governance
would provide the adaptive capacity necessary to generate effective
responses to biological invasions (including prevention of known
potential invaders). However, we argue that the previous
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scholarship calling for adaptive governance of biological inva-
sionsdwhich presumed designed governance structuresdignored
the self-organizing nature of adaptive governance. Our approach
assumes that the emergence of adaptive governance will include
governance mechanisms to ensure fairness and justice in priori-
tizing the management of invasions at various scales, beyond what
Cook et al. (2010) referred to as mechanisms “to achieve the highest
ratio of winners to losers within a society.” However, this idea
represents a critical void in scholarship on adaptive governance
generally, and the governance of invasions specifically.

4. Synthesis

Our concurrent review of biological invasions, resilience and
resilience-based approaches to governance, suggests a shift in focus
from design principles for flexibility in managing species, to an
approach that manages the resilience of a desired ecosystem
regime that includes all species, associated functions and
ecosystem services. The emergence of adaptive governance is often
a societal response to degradation of economic, cultural or other
social benefits provided by ecosystem services (e.g., food produc-
tion, clean water, raw materials). However, most contemporary
approaches to governing biological invasions are overly focused on
species makeup as opposed to holistic ecosystem function (e.g.,
Cook et al., 2010; Foxcroft andMcGeoch, 2011).We suggest that one
of the key insights for governance, from our review of biological
invasions through a resilience lens, is the need to approach the
governance and subsequent management of invasions at the
regime scale as opposed to an individual species-by-species basis.
This equates to developing an adaptive governance approach to
maintain desired regimes of ecosystem function, which we suggest
can be accomplished by increased attention to the more anthro-
pocentric concept of ecosystem services.

4.1. Adaptive governance of biological invasions: an ecosystem
services approach

Ecosystem services provide the fundamental basis for human
wellbeing and societal development (Daily, 1997); the capacity of
ecosystems to produce services is determined by the condition of
ecosystems. Some ecosystem services have high direct economic
value and are often prioritized in governance, such as food, fiber
and fresh water (i.e., “provisioning” services), but their existence
builds on the presence of oft neglected “regulating” services (e.g.,
water and air purification, climate regulation and soil develop-
ment) and “supporting” services (e.g., primary production and
nutrient cycling) (Millennium Ecosystem Assessment, 2005;
Carpenter et al., 2006). Generally prioritized to a lesser extent (at
least economically) are “cultural” ecosystem services that describe
the recreational, aesthetic and spiritual value of ecosystems and
biophysical processes. Regime shifts in ecological systems are
generally associated with significant changes in ecosystem service
production (e.g., Moberg and Folke, 1999), and thus resilience to
change in ecosystems plays a key role in this context as it provides
stability to the flow of ecosystem services in the long-term under
changing conditions (Folke et al., 2004). Maintaining or enhancing
resilience of desirable regimesdthose that produce the desired
combination or amount of ecosystem services for humanwellbeing
(or reducing resilience of degraded or ‘undesirable’ regimes)dis a
high priority in a society facing unprecedented levels of environ-
mental change and uncertainty. Managing for resilience in social-
ecological systems for the continued production of critical
ecosystem services provides a potential route towards environ-
mental sustainability (Folke et al., 2002).

Taking an ecosystem services approach to governance

necessitates that ecosystem services become a critical factor in
defining ‘desired’ ecological regimesdregimes to be maintained by
enhancing resilience to disturbance or regimes that are aspired to
through active transformation of social-ecological systems. The
processes of adaptive governance are a recognized mode of
achieving desired regimes in social-ecological systems by providing
structure and processes for society to navigate tradeoffs between
the use and conservation of ecological resources. These tradeoffs
represent prioritized linkages between humans and ecosystem and
can be captured in the concept of ecosystem services. Thus, adap-
tive governance can and should be thought of as the structures and
processes that facilitate the societal prioritization andmanagement
of ecosystem services, as opposed to management of species
composition as in the case of invasive species. Refocusing on
ecosystem services may serve to better translate ‘what society
wants’ into actionable management that can be informed by
ecosystem science. Below we discuss an example from Nebraska,
USA to more clearly illustrate this idea.

4.2. Invasive red cedar and tradeoffs between ecosystem services:
The Nebraska (USA) Natural Legacy Project as an approach to
adaptive governance

The state of Nebraska, together with public and private partners
(local, federal and NGO), has initiated an adaptive approach to
managing prairie landscapes for wildlife habitat (both cultural and
supporting ecosystem services) and other prioritized ecosystem
services (Schneider et al., 2011). This plan includes active adaptive
management, including management of red cedar (Juniperus vir-
giniana) and other native invasive species. Red cedar is aggressively
spreading due to a century of natural fire regime suppression
(Pierce and Reich, 2010; Schneider et al., 2011). Red cedar invasion
of grasslands leads to a loss of grassland wildlife habitat and
reduced livestock forage (Schneider et al., 2011). Evidence from the
southern Great Plains documents catastrophic collapses in biodi-
versity following cedar invasion, including a reduction in the
abundance of grassland birds, small mammals and pollinators
(Limb et al., 2010). Collapses in the diversity and abundance of
endemic grassland species following transformation to juniper
woodland (cedar) correspond with declines in social-ecological
values; specifically, juniper invasions threaten cattle ranching
livelihoods. Cattle production can decline significantly after a sys-
tem transition from grassland to juniper woodland. Juniper inva-
sion also reduces wildfire suppression potential and has been
implicated as a major reason for the increase in the frequency and
size of wildfires at the wildland-urban interface (Pierce and Reich,
2010). Fire, especially uncontrolled wildfire, is perceived negatively,
even though the natural fire regime provides an ecosystem service
in controlling cedar invasions (Morton et al., 2010; Harr et al., 2014).
The transition between grasslands and cedar forests is non-linear,
and both system regimes are generally resilient to change (Pierce
and Reich, 2010). Thus, managing these alternate regimes is not
only important to public agencies and private organizations vested
in maintaining grassland diversity, but also to the interests of the
private landowners and members of the public who value ranching
livelihoods and recreational opportunities such as grassland bird
hunting.

The Nebraska Wildlife Action Plan (part of the Natural Legacy
Project) can be described as an adaptive governance approach to
maintaining desired ecosystem services in the Great Plains
ecosystem by conserving natural habitats (not simply species) and
associated human values of those ecosystems (Schneider et al.,
2011). Part of the plan calls explicitly for an adaptive manage-
ment approach to on-the-ground applications to increase the bio-
physical knowledge (through experimentation) of how to best
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manage cedar invasions. This generally involves experimental ap-
proaches such as cutting, fire, herbicides, grazing domestic goats
and combinations thereof. The plan recognizes that cedar invasion
in the ecosystem is not simply a biological problem, but has as
much to do with how people perceive the landscape and struc-
turing processes such as fire (e.g, Morton et al., 2010; Harr et al.,
2014). Therefore, the Nebraska Wildlife Action Plan has also pro-
vided for scenario-building exercises with a landscape-level group
of stakeholders (e.g., ranchers, local communities, land manage-
ment agencies, local researchers), such that alternative future states
of landscapes can be envisioned, and pathways to attain desirable
future states are identified collaboratively. These scenario-building
exercises create a venue for collective interests in governance to
engage in social learning, for example, recognizing tradeoffs in
ecosystem services related to the reducing fire in the landscape,
increased cedar invasions and decreased viability of cattle ranching.
The adaptive approach of the Nebraska Wildlife Action Plan has
facilitated social learning among private landowners who previ-
ously perceived prescribed fire as an undesirable management
alternative. As a result of this learning, community-centered burn
associations have been formed and supported throughout
Nebraska to reintroduce fire regimes to the landscape (Schneider
et al., 2011). Burn associations are locally governed organizations
with the sole purpose of enabling community members to help
each other burn their grasslands to mimic natural fire regimes, and
for members to learn from one another and from the application of
associated management actions. These associations, the enabling
governance structures (e.g., the Nebraska Wildlife Action Plan) and
the social learning resulting from adaptive management, represent
an adaptive governance response to manage the social-ecological
resilience of Nebraska's prairie grasslands.

5. Discussion and conclusions

Biological invasions can decrease resilience of desired
ecosystem regimes if the invaders out-compete native species that
are critical to maintaining ecosystem services or change ecological
processes that can lead to a regime shift (Matsuzaki et al., 2009).
Loss of ecological function of the native community (e.g., phyto-
plankton primary productivity) due to biological invasions may be
associated with the loss of certain ecosystem services (e.g.,
increased bloom formation of invasive, mixotrophic algae that re-
duces the recreational quality of lakes (Angeler et al., 2012)). Other
deleterious effects from biological invasions may include changes
in disturbance patterns, in dynamics of trophic cascades and in
disruption of the structures and processes that effect biogeo-
chemical cycling in ecological systems (Vitousek and Walker, 1989;
Mack and D'Antonio, 1998; Needles et al., 2015). These may
contribute to regime shifts towards undesired ecosystem states as
well as reinforce the persistence of these states and spur further
invasions (Yelenik and D'Antonio, 2013).

Invasions can also build resilience in desired ecosystem regimes
and introduce beneficial novelty to maintain these states. Invasive
species can replace ecological functions lost with species extinc-
tions in ecosystems (Griffiths et al., 2010), and therefore could
replace lost, or complement current, ecosystem services in a
desired regime (Thijs et al., 2015). This conclusion should be viewed
with caution, however, as there may be a time lag in the effects of
invasions on the overall system. Thus, a positive result of an inva-
sion could simply be a short-term ‘fix’ that eventually results in
deleterious effects for the ecosystem in question. Associated with
replacing ecological functions, biological invasions can increase
functional diversity and cross-scale redundancy, which could in-
crease the resilience of a system. Invasions can reinforce structures
and processes, which increase resilience but not necessarily that of

a desired regime (Yelenik and D'Antonio, 2013). Invasive species
may add functions that do not have deleterious effects, but instead
functions that create and enhance adaptive capacity. In a world of
increasing transformation in climate and land cover, a deeper un-
derstanding of the relationship between invasive species and their
effect on adaptive capacity of ecosystems is critical.

There is no doubt that the rapid spread of invasive species has
and will continue to have deleterious effects on the structure and
function of invaded ecosystems, as well as on the economic and
cultural benefits humans receive from these ecosystems. Although
invasive detection and eradication technology has improved at
breakneck speed, completely stopping the spread of biological in-
vasions remains highly unlikely. The societal challenge instead is to
govern the introduction and spread of invasive species in a manner
that limits social and ecological losses. Employing an increased
understanding of the interaction between invasions and the resil-
ience of ecosystems may lead to an approach to governing invasive
species in a more integrated and cost-efficient manner given a
renewed focus on understanding and managing ecosystem dy-
namics as opposed to single species.

Understanding invasions’ potential influence on the resilience of
ecosystems (and regime shift dynamics) emphasizes the need for a
focus on ecosystem services instead of species. Because ecosystem
services are multifaceted (i.e., invasions might be beneficial for one
service but deteriorate another), there is need to operationalize
invasion effects on ecosystem services: invasions of what, to what
and for what? This operationalization can facilitate adaptive
governance approaches amenable to a constant recalibration and
shift in focus of management without being applied prescriptively
by targeting the invasive species alonedemploying an adaptive
management approach to learning and adjusting larger scale
governance of invasions. Adaptive governance for biological in-
vasions should focus on function, processes and dynamics at the
ecosystem scale, and consider the incorporation of threshold dy-
namics in decision frameworks of invasive species management
and restoration (Gaertner et al., 2012). Adaptive governance in this
regard may serve as an improved management approach for hybrid
systems like agroecosystems, which can be composed of econom-
ically viable invasive species. An adaptive strategy for governing
invasions calls for transparency of knowledge, networks, nesting,
scale fit, participation and targeted funding using ecosystem ser-
vices as incentives to collaborate, and crisis as key motivator of
changing narratives. Moving forward, there are barriers to imple-
menting an adaptive governance approach to biological invasions,
such as legitimacy of process, how to define goals and most
importantly, funding for the approach. Despite these barriers, we
believe that an adaptive governance approach can be an effective
mechanism for dealing with biological invasions in an increasingly
connected world.
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