169 research outputs found

    Torsion-free and distal dp-minimal groups

    Full text link
    Let GG be a dp-minimal group. We discuss two different hypotheses on GG; first we show that, if GG is torsion-free, then it is abelian. Then we investigate the structure of GG when it admits a distal f-generic type, showing in particular that the quotient of GG by its FC-center can then be naturally equipped with the structure of a valued group. As an application of this, we show that, in this case, GG is virtually nilpotent

    Product-free sets in approximate subgroups of distal groups

    Full text link
    Recall that a subset XX of a group GG is 'product-free' if X2∩X=∅X^2\cap X=\varnothing, ie if xy∉Xxy\notin X for all x,y∈Xx,y\in X. Let GG be a group definable in a distal structure. We prove there are constants c>0c>0 and δ∈(0,1)\delta\in(0,1) such that every finite subset X⊆GX\subseteq G distinct from {1}\{1\} contains a product-free subset of size at least δ∣X∣c+1/∣X2∣c\delta|X|^{c+1}/|X^2|^c. In particular, every finite kk-approximate subgroup of GG distinct from {1}\{1\} contains a product-free subset of density at least δ/kc\delta/k^c. The proof is short, and follows quickly from Ruzsa calculus and an iterated application of Chernikov and Starchenko's distal regularity lemma.Comment: added some remarks on the case G=GLn(C), an appendix on solvable groups, and some more reference

    On f-generic types in NIP groups

    Full text link
    Let GG be a group definable in an NIP theory. We prove that, if GG admits a global f-generic type, then GG is definably amenable, answering a question of Chernikov and Simon.Comment: changed proof of Lemma 3.1 and added more details to "Preliminaries" sectio

    Forking and invariant measures in NIP theories

    Full text link
    We give an example of an NIP theory TT in which there is a formula that does not fork over ∅\varnothing but has measure 00 under any global ∅\varnothing-invariant Keisler measure, and we show that this cannot occur if TT is also first-order amenable

    Molecular Basis and Consequences of the Cytochrome c-tRNA Interaction.

    Get PDF
    The intrinsic apoptosis pathway occurs through the release of mitochondrial cytochrome c to the cytosol, where it promotes activation of the caspase family of proteases. The observation that tRNA binds to cytochrome c revealed a previously unexpected mode of apoptotic regulation. However, the molecular characteristics of this interaction, and its impact on each interaction partner, are not well understood. Using a novel fluorescence assay, we show here that cytochrome c binds to tRNA with an affinity comparable with other tRNA-protein binding interactions and with a molecular ratio of ∼3:1. Cytochrome c recognizes the tertiary structural features of tRNA, particularly in the core region. This binding is independent of the charging state of tRNA but is regulated by the redox state of cytochrome c. Compared with reduced cytochrome c, oxidized cytochrome c binds to tRNA with a weaker affinity, which correlates with its stronger pro-apoptotic activity. tRNA binding both facilitates cytochrome c reduction and inhibits the peroxidase activity of cytochrome c, which is involved in its release from mitochondria. Together, these findings provide new insights into the cytochrome c-tRNA interaction and apoptotic regulation

    Influence of chemical denudation on hillslope morphology

    Get PDF
    [1] Models of hillslope evolution involving diffusion-like sediment transport are conventionally presented as an equation in which the changes in land-surface elevation or soil thickness are balanced by the divergence of soil transport and tectonic uplift, soil production, or both. These models typically do not include the loss or gain of mass in hillslope soils due to processes of chemical weathering and deposition. We formulate a more general depth-integrated equation for the conservation of soil mass on a hillslope that includes a term representing chemical deposition or denudation. This general depth-integrated equation is then simplified to determine the one-dimensional form of a steady state hillslope which experiences both mechanical and chemical denudation. The differences in morphology between hillslopes only experiencing diffusion-like mechanical sediment transport and hillslopes experiencing both diffusion-like mechanical sediment transport and chemical denudation are explored. Under the conditions of a downslope increase in local soil lowering rate due to chemical weathering the hillslope profile will depart from the parabolic shape predicted by models that incorporate only linear diffusion-like mechanical sediment transport. In addition, hillslopes that experience both chemica

    Nutrient Processes at the Stream-Lake Interface for a Channelized Versus Unmodified Stream Mouth

    Get PDF
    Inorganic forms of nitrogen and phosphorous impact freshwater lakes by stimulating primary production and affecting water quality and ecosystem health. Communities around the world are motivated to sustain and restore freshwater resources and are interested in processes controlling nutrient inputs. We studied the environment where streams flow into lakes, referred to as the stream-lake interface (SLI), for a channelized and unmodified stream outlet. Channelization is done to protect infrastructure or recreational beach areas. We collected hydraulic and nutrient data for surface water and shallow groundwater in two SLIs to develop conceptual models that describe characteristics that are representative of these hydrologic features. Water, heat, and solute transport models were used to evaluate hydrologic conceptualizations and estimate mean residence times of water in the sediment. A nutrient mass balance model is developed to estimate net rates of adsorption and desorption, mineralization, and nitrification along subsurface flow paths. Results indicate that SLIs are dynamic sources of nutrients to lakes and that the common practice of channelizing the stream at the SLI decreases nutrient concentrations in pore water discharging along the lakeshore. This is in contrast to the unmodified SLI that forms a barrier beach that disconnects the stream from the lake and results in higher nutrient concentrations in pore water discharging to the lake. These results are significant because nutrient delivery through pore water seepage at the lakebed from the natural SLI contributes to nearshore algal communities and produces elevated concentrations of inorganic nutrients in the benthic zone where attached algae grow

    Plant and Environment Interactions Simplified Method for Detecting Tritium Contamination in Plants and Soil

    Get PDF
    ABSTRACT behave nearly identically in the subsurface and can move in both the liquid and vapor phases (Phillips, penetration of roots and water to a depth of about 1 to desert plant, the approach may be transferable to other species and environments after site-specific experiments. Cos

    Using Heat to Characterize Streambed Water Flux Variability in Four Stream Reaches

    Get PDF
    Estimates of streambed water fl ux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April–December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed

    Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments

    Get PDF
    Natural perchlorate (ClO4-) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO4- compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO4- in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO4- to the more well-studied atmospherically deposited anions NO3- and Cl- as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO4- is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10-1 to 106 µg/kg. Generally, the ClO4- concentration in these regions increases with aridity index, but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO3- and ClO4- co-occur at molar ratios (NO3-/ClO4-) that vary between ~104 and 105. We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N2 fixation, N mineralization, nitrification, denitrification, and microbial ClO4- reduction, as indicated in part by NO3- isotope data. In contrast, much larger ranges of Cl-/ClO4- and Cl-/NO3- ratios indicate Cl- varies independently from both ClO4- and NO3-. The general lack of correlation between Cl- and ClO4- or NO3- implies that Cl- is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a NO3-/ClO4- molar ratio ~103. The relative enrichment in ClO4- compared to Cl- or NO3- and unique isotopic composition of Atacama ClO4- may reflect either additional in-situ production mechanism(s) or higher relative atmospheric production rates in that specific region or in the geological past. Elevated concentrations of ClO4- reported on the surface of Mars, and its enrichment with respect to Cl- and NO3-, could reveal important clues regarding the climatic, hydrologic, and potentially biologic evolution of that planet. Given the highly conserved ratio of NO3-/ClO4- in non-biologically active areas on Earth, it may be possible to use alterations of this ratio as a biomarker on Mars and for interpreting major anion cycles and processes on both Mars and Earth, particularly with respect to the less-conserved NO3- pool terrestrially
    • …
    corecore