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[1] Models of hillslope evolution involving diffusion-like sediment transport are
conventionally presented as an equation in which the changes in land-surface elevation or
soil thickness are balanced by the divergence of soil transport and tectonic uplift, soil
production, or both. These models typically do not include the loss or gain of mass in
hillslope soils due to processes of chemical weathering and deposition. We formulate a
more general depth-integrated equation for the conservation of soil mass on a hillslope that
includes a term representing chemical deposition or denudation. This general depth-
integrated equation is then simplified to determine the one-dimensional form of a steady
state hillslope which experiences both mechanical and chemical denudation. The
differences in morphology between hillslopes only experiencing diffusion-like mechanical
sediment transport and hillslopes experiencing both diffusion-like mechanical sediment
transport and chemical denudation are explored. Under the conditions of a downslope
increase in local soil lowering rate due to chemical weathering the hillslope profile will
depart from the parabolic shape predicted by models that incorporate only linear diffusion-
like mechanical sediment transport. In addition, hillslopes that experience both chemical
and mechanical denudation may have a convex-concave profile at steady state. A
necessary condition for such steady state profiles is that the chemical denudation rate must
exceed the mechanical denudation rate. We further suggest that combinations of other
physical parameter values (such as total denudation rate, average soil depth, sediment
diffusivity, and the increase in soil depth away from the divide) that lead to steady state
convex-concave hillslope profiles may exist in a wide variety of natural settings. INDEX

TERMS: 1824 Hydrology: Geomorphology (1625); 1815 Hydrology: Erosion and sedimentation; 1886

Hydrology: Weathering (1625); KEYWORDS: hillslope geomorphology, steady state landscapes, weathering

Citation: Mudd, S. M., and D. J. Furbish (2004), Influence of chemical denudation on hillslope morphology, J. Geophys. Res., 109,

F02001, doi:10.1029/2003JF000087.

1. Introduction

[2] Landscapes that contain topographic relief are often
mantled with soil. In a seminal paper, Gilbert [1909]
remarked that downslope motion of sediment on a hillslope
is impelled by gravity, which depends on slope for its
effectiveness. Furthermore, Gilbert [1909] noted that in
order to accommodate increasing downslope sediment flux,
the transport rate of sediment should increase away from the
hillslope divide, and therefore the local slope should steepen
away from the divide. The result of this steepening slope is
the presence of a convex hillslope (Figure 1). Culling
[1960] formalized this observation mathematically by com-
bining a sediment flux law and a statement of mass
conservation. The flux law used by Culling [1960], in
which the sediment flux is a linear function of the surface
elevation gradient, was analogous to the heat flux law

introduced by Fourier [1822]; such gradient-driven pro-
cesses are referred to as diffusive. Since the publication of
Culling’s [1960] work, other researchers have proposed
nonlinear flux laws [e.g., Anderson, 2002; Andrews and
Bucknam, 1987; Carson and Kirkby, 1972; Furbish and
Fagherazzi, 2001; Gabet, 2000, 2003; Gabet et al., 2003;
Kirkby, 1967; Roering et al., 1999]. Because the analogy to
heat or chemical diffusion is not perfect, the family of flux
laws describing hillslope sediment transport is now more
appropriately referred to as dispersive or ‘‘diffusion-like.’’
[3] The equations of diffusion-like hillslope sediment

transport have been used to investigate the dynamics and
implications of hillslope morphology and evolution. Some
researchers have used these equations to explore the charac-
teristic forms of steady state or equilibrium hillslopes and the
adjustment times from transient profiles to steady state
profiles [e.g., Ahnert, 1976, 1987; Armstrong, 1976, 1980,
1987; Arrowsmith et al., 1996; Fernandes and Dietrich,
1997; Furbish and Fagherazzi, 2001;Hirano, 1976; Roering
et al., 1999]. In these studies, steady state refers to a situation
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in which the elevation of the soil surface does not change
through time. This surface elevation can be the elevation in a
moving reference frame in the case of steady base-level fall or
in a fixed reference frame in the case of steady uplift. Others
have used a steady state assumption to investigate the
mechanics and nature of soil production [e.g., Heimsath et
al., 1999]. These studies assume that soil depth does
not change through time. As pointed out by Braun et al.
[2001], this definition of steady state does not necessarily
imply topographic steady state. Others [e.g., Anderson and
Dietrich, 2001] have defined steady state as a condition in
which a broad range of physical characteristics of the soil,
such as soil density, soil chemistry, and soil depth, in addition
to surface elevation, do not vary with time.
[4] Another group of researchers has used the most basic

forms of the equations of hillslope sediment transport
(typically linear flux laws with threshold slopes) in models
of landscape evolution [e.g., Anderson, 1994; Braun and
Sambridge, 1997;Howard, 1994, 1997;Kooi and Beaumont,
1994; Tucker and Slingerland, 1996;Willgoose et al., 1991].
Tucker and Bras [1998] found that a landscape’s morphology
is highly sensitive to the suite of mechanisms of sediment
transport operating within it.
[5] As anticipated by Gilbert [1909], analytic and

numerical solutions of the equation of mass conservation
on hillslopes with diffusion-like sediment transport have
shown that with steady base-level fall, hillslope profiles
will have negative curvature (indicating a convex hill-
slope (see Figure 1)). Predicted hillslope curvature can
approach zero (a locally planar hillslope) if a nonlinear
diffusion-like sediment flux law is used [Roering et al.,
1999]. In rapidly uplifting landscapes such as the Oregon
Coast Range or Central Range of Taiwan the hillslopes
are commonly convex near the divide and planar down-
slope [Roering et al., 1999]. Concavity on hillslopes with
steady base-level fall may be caused by processes such as
sheetwash [e.g., Ahnert, 1976; Kirkby, 1971], but in

landscapes with gentler slopes or high infiltration capac-
ities, overland flow is uncommon and not an effective
process of geomorphic change.
[6] Hillslope concavity is often seen in landscapes

where overland flow is uncommon. In such landscapes
the concavity has been identified as a location of sedi-
ment deposition and storage [e.g., Armstrong, 1987]. The
deposition of sediment reflects a transient state. In a two-
dimensional (2-D) numerical model, Rinaldo et al. [1995]
investigated unchanneled valleys, where there is land-
scape concavity but no fluvial channel to maintain the
concavity. Rinaldo et al. [1995] described these unchan-
neled valleys as indicators of climatic or tectonic change.
If the climate becomes ‘‘drier’’ (in the work of Rinaldo et
al. [1995] a drier climate simply indicated that a greater
drainage area was required for fluvial erosion), uplift is
reduced, or the runoff threshold (the amount of rain that
must fall before overland flow is generated) is increased
due to changes in the biota present on the landscape, the
fluvial system retreats downstream, and diffusion-like
hillslope processes begin depositing sediment and filling
unchanneled valleys. Unless the sediment filling these
valleys is evacuated by a fluvial network that has
expanded due to climate change, the valleys will be
smoothed from the landscape (Figure 2).
[7] The timescale of the gradual smoothing away of

landscape concavities (such as an unchanneled valley in
the 2-D case (Figure 2)) on hillslopes experiencing only
diffusion-like sediment transport is dictated by the relax-
ation time of the hillslope. The relaxation time of a
hillslope has been defined as the time it takes for a
hillslope to approach an equilibrium state after a change
in climate (represented by a change in the sediment
diffusivity) or a change in base-level lowering rate
[Fernandes and Dietrich, 1997; Roering et al., 2001].
Relaxation times for hillslopes with typical diffusivities
have been found to be on the order of 104–106 years
[Fernandes and Dietrich, 1997; Roering et al., 2001;
Anderson, 2002]. Many ancient landscapes, such as the
Piedmont of the eastern United States, have widespread
landscape concavities. Why have the unchanneled valleys
and landscape concavities in these ancient landscapes not
been filled by hillslope processes? Are landscapes con-
taining unchanneled valleys diffusing away to a Davisian
[Davis, 1889] peneplain? Despite a drastically reduced
rate of base-level fall, can landscape concavities persist
solely due to the effects of climatic fluctuations?
[8] One explanation for the presence of long-lived land-

scape concavity is that it is periodically rejuvenated by
episodes of wet weather or other climatic or biotic changes
that cause the expansion of the channel network and erosion
of sediment-filled valleys [Rinaldo et al., 1995]. We
suggest, however, that in addition to the theory of Rinaldo
et al. [1995], there exists another plausible explanation of
concavity in landscapes older than the hillslope relaxation
time. We show that the convex-concave hillslope can exist
in an equilibrium state due to a process that has been largely
ignored in previous hillslope evolution studies. This process
is mass loss in the soil due to chemical weathering. We
derive an depth-integrated equation of mass conservation in
hillslope soils that includes the mass lost or gained through
chemical processes. This equation is simplified to 1-D and

Figure 1. (a) An idealized convex-concave hillslope. The
convex portion has negative curvature by convention, and the
concave portion has positive curvature. (b) Slope curvature.
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is used to investigate how chemical processes may affect
the curvature, slope, and form of hillslopes. We explore the
combinations of physical parameter values including total
denudation rate, sediment diffusivity, the increase in soil
depth away from the divide, and the ratio of the mechanical
to chemical denudation rate that lead to a convex-concave
profile at steady state. We further suggest that these combi-
nations of parameters associated with a steady state convex-
concave hillslope profile may exist in a wide variety of
natural settings.

2. A Depth-Integrated Equation of Hillslope Mass
Conservation Incorporating Chemical Denudation
and Deposition

2.1. Previous Work

[9] Before the implications of chemical weathering on
hillslope morphology can be investigated, the equation of
hillslope sediment transport incorporating this process
must be derived. Few researchers have addressed the
processes of chemical weathering, denudation, or deposi-
tion in their analysis. Furbish and Fagherazzi [2001]
proposed a heuristic alteration of the soil production
function as described by Heimsath et al. [1997] to account
for weathering. Ahnert [1987] included dissolved load
denudation derived from slope wash but calculated this
chemical denudation as a function of the overland flow
and not as weathering and transport occurring within the
soil profile. Small et al. [1999] used a dissolution term in a
steady state form of the equation of mass conservation on
a hillslope to show that dissolution can affect ages
determined by cosmogenic radionuclides but did not
explore the implications of denudation on hillslope mor-
phology. Likewise, Kirkby [1977, 1985] modeled soil
chemistry evolution within a creeping soil but only

reported modeled vertical soil profiles and did not com-
ment on the expression of these processes on the mor-
phology of the hillslopes in question.

2.2. General Statement of Mass Conservation

[10] Researchers typically report the hillslope diffusion-
like equations as a specific case of a more general statement

Figure 2. Idealized simulation of a soil-mantled landscape
using a traditional form of the sediment continuity equation,
rs (@z/@t) � Kr2z � rrUz = 0. Terms are defined in the text.
Values for the parameters are rr = 2000 kg�3, rs =
1000 kg�3, RT = 1 � 10�5 m yr�1, and K = 10 kg yr�1 (D =
1 � 10�2 m2 yr�1). The domain represents a straight main
stem channel that is eroding at the rate of uplift (@z/@t = 0)
and transporting all sediment delivered to it. Two additional
tributary channels with exponential profiles are initially
imposed on the hillslope; these channels are also eroding at
the rate of uplift and transporting all sediment delivered
to them. This landscape is then brought to steady state
(@z/@t = 0 everywhere), as shown in Figure 2a. The
tributary channels then recede (no fluvial erosion or
transport), and only the main stem channel erodes at the
rate of uplift. The valleys fill significantly by 250 ka
(Figure 2b), and the unchanneled valleys almost completely
disappear from the landscape by 750 ka after imposition of
the new conditions (Figure 2c). Figure 2d shows profiles
parallel to the main stem at a distance of 250 m from the
divide. At steady state the curvature of the side slopes are
negative, resulting in a convex hillslope form. Only when
the tributary channels are removed does there appear a
concave section of the side slope, representing deposition
and filling of the unchanneled valleys (Figure 2d).
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of local mass conservation. This specific case is generally
assumed a priori. Here we derive the equation for conser-
vation of mass on a hillslope directly from a local statement
of mass conservation. We begin with the familiar continuum
element with a surface A (L2), a volume V (L3), and a vector
normal to the surface n (L). A generalized form of the local
conservation of mass in this element is

Z
V

@

@t
rsdV þ

Z
A

rsvð Þ � ndA�
Z
V

SvdV ¼ 0; ð1Þ

where rs (ML�3) is the dry bulk density of the soil and v
(LT�1) is the velocity vector of the material at the surface of
the element. The velocity will be an ensemble average
velocity of the discrete particles crossing the surface of the

continuum element (Figure 3). The first term is the change
in mass per unit volume per unit time of the material in the
continuum element, and the second term is the flux of mass
per unit volume across the surface of the element. Sv
(ML�3T�1) is a mass source or sink per unit volume per
time and will be referred to as the chemical denudation and/
or deposition rate. Equation (1) is used here to describe the
local conservation of mass in the solid phase of a hillslope
soil. The local soil mass can change due to dissolution into
or precipitation from the aqueous phase, which is described
by the source or sink term. This term allows the equation of
soil mass conservation to be coupled to advection-disper-
sion-reaction (ADR) equations, which describe solute
concentration for chemical species in the aqueous phase.
This coupling is beyond the scope of this contribution but
will be important in future research. Coupling equation (1)
to the ADR equations is not necessary for significant details
of hillslope form and process to be interpreted through
equation (1).
[11] The velocity vector in equation (1) can be decom-

posed into tectonic velocity, U (LT�1) and local soil
velocity vs (LT

�1):

Z
V

@

@t
rsdV þ

Z
A

rs vs þ Uð Þ½ 
 � ndA�
Z
V

SvdV ¼ 0: ð2Þ

Invoking Gauss’s law, the flux term (the second term) is
converted to a volume integral, after which the resulting
integral can be differentiated to

@rs
@t

þr � rsvsð Þ þ r � rsUð Þ � Sv ¼ 0: ð3Þ

Equation (3) may be written in component form:

@rs
@t

þ @ rsvsxð Þ
@x

þ
@ rsvsy
� �
@y

þ @ rsvszð Þ
@z

þ @ rsUxð Þ
@x

þ
@ rsUy

� �
@y

þ @ rsUzð Þ
@z

� Sv ¼ 0; ð4Þ

where the subscripts x, y, and z denote the components of
the sediment and tectonic velocity vectors in the x, y, and z
directions, respectively (Figure 3).

2.3. Depth Integration of the Statement
of Mass Conservation

[12] Coordinates for the surface of the soil (z = z) and the
base of the active soil (z = h) are adopted (Figure 3). Soil
scientists, geomorphologists, and geologists may use differ-
ent definitions for the words regolith, soil, saprolite, and
bedrock. The definition of soil adopted here is that part of
the material at the near surface that is being actively
disturbed by mechanical means: the active layer. The active
layer will extend to the deepest of the rooting depth,
burrowing depth, creep depth, shrink-swell depth, or frost-
heave depth. This is different from the traditional definitions
of soil and bedrock, but here the definitions reflect the
emphasis on the physics of transport. The terms ‘‘mechan-
ically active layer’’ and ‘‘mechanically inactive layer’’ may
be more appropriate, but in many natural settings the soil
and the saprolite (or bedrock) coincide with the active and
inactive layers, respectively, so these terms are retained.

Figure 3. Diagrams of coordinate system adopted for soil-
mantled hillslopes. If the surfaces z = h and z = z change as
shown in Figure 3b, then the production rate (ph) is positive,
and that deposition rate (dz) is negative.
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[13] Equation (4) may then be depth integrated between z
and h:

Zz
h

@rs
@t

dzþ
Zz
h

@ rsvsxð Þ
@x

dzþ
Zz
h

@ rsvsy
� �
@y

dzþ
Zz
h

@ rsvszð Þ
@z

dz

þ
Zz
h

@ rsUxð Þ
@x

dzþ
Zz
h

@ rsUy

� �
@y

dzþ
Zz
h

@ rsUzð Þ
@z

dz

�
Zz
h

Svdz ¼ 0: ð5Þ

The soil depth h is the distance between the surface and
base of the soil:

h ¼ z� h: ð6Þ

The integrals in equation (5) are evaluated using the mean
value theorem and Leibniz’s rule (Appendix A).

2.4. Kinematic Conditions at the Soil Surface
and the Soil-Bedrock Boundary

[14] The use of Leibniz’s rule in equation (5) results in
a number of terms that are evaluated at the coordinates z =
z and z = h. These terms must be addressed by assigning
kinematic boundary conditions. These are the conditions
that describe the motion of the soil surface and the soil-
bedrock boundary. The kinematic boundary condition at
z = z is

@z
@t

¼ vsz þ Uzð Þ
����
z
� vsx þ Uxð Þ

����
z

@z
@x

� vsy þ Uy

� �����
z

@z
@y

þ dz: ð7Þ

The first term to the right of the equality is the vertical
velocity at the soil surface. The second and third terms
result from the fact that a particle must remain on the soil
surface even if it has horizontal velocity. If a particle that
remains on the surface moves to a location with a
different surface coordinate, it must have some compo-
nent of vertical velocity. The last term to the right of the
equality, dz (LT�1), is a deposition or erosion term. This
term can describe deposition from organic or aeolian
sources or erosion from overland flow. It should be noted
that this term describes mass being transported in or out
of the hillslope sediment system. This term allows
coupling of the hillslope sediment transport equation to
transport equations for overland flow. Processes in which
sediment only briefly leaves the system but over the long
term resides on the hillslope, such as rain splash, should
be accounted for in the flux terms in the hillslope
sediment conservation equation. Additionally, in some
cases the leaf layer may not be considered part of the soil
profile. Organic carbon in the soil is left by the decay of
roots within the soil and leaching of carbon from the leaf
litter layer into the underlying soil. In these cases the
mass contributed to the soil from organic carbon would
be encompassed by the chemical denudation and deposi-
tion term.

[15] The kinematic boundary condition at the soil-bed-
rock interface is

@h
@t

¼ Uzjh � Uxjh
@h
@x

� Uyjh
@h
@y

� ph: ð8Þ

The sediment velocities in the x, y, and z directions at this
boundary are zero, but tectonic velocities are nonzero. The
term ph (LT

�1) will be positive if the active layer lowers in
the absence of tectonic velocities. One cause of lowering of
the active layer is soil production, which is the conversion
of bedrock or saprolite to soil through chemical, biological,
or mechanical processes [e.g., Heimsath et al., 1997].

2.5. Depth-Integrated Equation for Mass
Conservation of Soil on a Hillslope

[16] After depth integration, the equation for mass con-
servation of soil on a hillslope is

@

@t
h�rsð Þ þ @

@x
hrsvsxð Þ þ @

@y
hrsvsy
� �

þ @

@x
hrsUx

� �
þ @

@y
hrsUy

� �
� h�Sv � rsjh ph

� �
� rsjz dz

� �
¼ 0: ð9Þ

The overbar denotes a depth-integrated quantity. The
quantity dz is positive for deposition and negative for
erosion, and the quantity �Sv is negative in the case of
dissolution and positive in the case of precipitation. Figure 3
shows the coordinate system and components of equation (9).
The dry bulk density at the soil-bedrock boundary, or rsjh, is
renamed rr. The dry bulk density of the soil at the surface, or
rsjz, is renamed rz. The second and third terms in equation (9)
contain sediment flux terms:

rsvsx ¼ qsx ð10aÞ

rsvsy ¼ qsy: ð10bÞ

The sediment fluxes qsx and qsy have units ML�2T�1. The
subscripts x and y denote flux in the x and y directions,
respectively. Substituting equations (10a) and (10b) into
equation (9) yields

@

@t
h�rsð Þ þ @

@x
hqsxð Þ þ @

@y
hqsy
� �

þ @

@x
hrsUx

� �
þ @

@y
hrsUy

� �
� h�Sv � rrph � rzdz ¼ 0: ð11Þ

Equation (11) may be written in vector form:

@

@t
h�rsð Þ þ r2 � hqsð Þ þ r2 � hrsU

� �
� h�Sv � rrph � rzdz ¼ 0:

ð12Þ

In equation (12), all vectors and vector operators are in the
x and y directions only, for example, r2 = i@/@x + j@/@y,
where i is the unit vector in the x direction and j is the unit
vector in the y direction.

2.6. Simplifying Assumptions for Conservation
of Mass Equation

[17] Equation (12) is a general form of the equation of
hillslope sediment continuity. Various forms of this equation
may be derived using simplifying assumptions. An almost
universal assumption in studies of hillslope geomorphology
is that the local horizontal tectonic motions are zero, or Ux =
Uy = 0. There are some examples of research at the
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mountain belt scale in which horizontal tectonic velocities
have been incorporated into a surface processes model [e.g.,
Ellis et al., 1999; Willett et al., 2001] but to the authors’
knowledge, none at the hillslope scale. The assumption of
zero horizontal tectonic velocities may be inappropriate in
some settings, such as small folds or basins, in which the
folding or extension is occurring at the scale of the hillslope.
A hillslope growing over a low angle blind thrust fault
should have significant horizontal tectonic velocities rela-
tive to vertical velocities [e.g., Keller et al., 1998]. For
many situations, however, an assumption of zero horizontal
tectonic velocities, such as landscapes undergoing long
wavelength flexure or isostatic rebound, will be appropriate.
[18] It is typically assumed a priori that deposition from

organic or aeolian sources is zero. Additionally, slope wash
is often not considered because it is a channelizing process
rather than a diffusion-like process [e.g., Ahnert, 1987]
(although it has been shown that overland flow can lead
to landscape convexity under the proper conditions [Dunne,
1991]). In either of the above cases the deposition term is
set to zero. Setting deposition to zero and assuming no
horizontal tectonic velocities leads to

@

@t
h�rsð Þ þ r2 � hqsð Þ � h�Sv � rrph ¼ 0: ð13Þ

A version of equation (13) expressed in terms of the rate of
change in the land surface elevation is presented in
Appendix B.

3. Steady State, Chemically Denuding Hillslope:
One-Dimensional (1-D) Analysis

[19] We investigate the effects of chemical processes on
hillslope form by using the limited but illustrative case of
the one-dimensional hillslope at steady state (to be defined
in section 3.1).

3.1. Derivation of Governing Equations

[20] Equation (13) may be cast in its one-dimensional
form:

@

@t
h�rsð Þ þ @

@x
hqsxð Þ � h�Sv � rrph ¼ 0: ð14Þ

This equation can be simplified by making steady state
assumptions. The first of these assumptions is that the
depth-integrated dry bulk density of the soil is spatially and
temporally homogenous. This implies (if the density of the
mineral grains that make up the soil is not changing) that the
porosity of the soil remains constant in time and space. Soils
may be maintained at a constant porosity because mechan-
ical disturbances such as bioturbation will collapse excess
porosity created by mass losses due to chemical weathering
[Brimhall et al., 1992]. The second assumption is that the
soil depth does not change in time (@h/@t). This eliminates
the first term in equation (14). The next assumption
involves defining elevations relative to a local base level:

@hbl
@t

¼ @h
@t

� @hl
@t

ð15aÞ

@zbl
@t

¼ @z
@t

� @hl
@t

; ð15bÞ

where the subscript bl indicates an elevation relative to base
level and hl is the elevation of the base level. The second

assumption in our definition of steady state is that the
elevations relative to base level are not changing in time, or
@hbl/@t = @zbl/@t = 0. This is the case of steady topographic
form implied byGilbert [1909]. The result of this assumption
is that the elevation of the soil-bedrock boundary and the
elevation of the soil surface anywhere on the hillslope are
changing at the same rate as the elevation of local base level.
It is assumed that the tectonic uplift rate is spatially
homogenous at the hillslope scale. If Uz and @h/@t are
spatially homogenous, then ph is also spatially homogenous.
[21] To maintain the steady state defined above, all the

soil entering the active layer on the hillslope must be
removed by either mechanical or chemical processes. In
other words, ph will equal the total denudation rate:

ph ¼ Rc þ Rm ¼ RT ; ð16Þ

where Rc is the chemical denudation rate (LT�1), Rm is the
mechanical denudation rate (LT�1), and RT is the total
denudation rate (LT�1). Incorporating the assumptions
stated above, equation (14) becomes

@

@x
hqsxð Þ ¼ h�Sv þ rrRT : ð17Þ

[22] At this point a constitutive equation for sediment flux
must be chosen. Two field studies have found evidence for a
linear sediment transport law on gentle slopes [Mckean et
al., 1993; Small et al., 1999]. A linear formulation also
allows analytic solutions for equation (17). Although there
is evidence that nonlinear sediment transport laws may be
operating on many natural hillslopes [Roering et al., 1999],
a linear sediment transport law is a reasonable approxima-
tion on gently sloping hillslopes and is used in this study.
The linear sediment transport equation is

hqs ¼ ��rsDr2z; ð18Þ

where D (L2T�1) is a sediment diffusivity. (Another
coefficient occasionally reported in the literature, K, is in
units of ML�1T�1. This coefficient is related to D by K =
�rsD.) It is assumed that D is spatially homogenous.
Equation (18) is inserted into equation (17), and the
resulting equation is divided by �rs to give

D
@2z
@x2

þ h�Sv
�rs

þ rr
�rs
RT ¼ 0: ð19Þ

Each of the three terms in equation (19) are rates in units
LT�1. These are the local rates of change of the surface
elevation due to diffusion-like sediment transport, chemical
denudation or deposition, and ph. Again, ph is replaced by the
total denudation rate because we have assumed steady
topographic form. The total denudation rate represents a rate
of lowering for material with density rr, whereas terms in
equation (19) represent soil lowering rates. This is why the
total denudation rate in the third term of equation (19) is
multiplied by a density ratio. The modeled hillslope has a
divide at x = 0 and a lower boundary (the base of the hillslope)
at x = l.

3.2. Denudation Rates

[23] Soil produced on the hillslope must be removed by
some combination of mechanical and chemical denudation
(equation (16)). This can be measured as denudation rates,
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which represent the rate of landscape lowering due to
mechanical and chemical processes.
3.2.1. Mechanical Denudation Rate
[24] The mechanical denudation rate averaged over the

hillslope is the rate of lowering caused by mechanical
hillslope processes and is related to the mechanical flux
through the lower boundary of the hillslope by

Rm ¼ �D�rs
rrl

@z
@x

�����
l

 !
; ð20Þ

where Rm (LT�1) is the slope-averaged mechanical
denudation rate and l (L) is the hillslope length. The
quantity in parentheses is the slope at the hillslope base.
3.2.2. Chemical Denudation Rate
[25] The local chemical denudation rate must be integrated

over the length hillslope to find the slope-averaged rate
because precipitation from or dissolution into the aqueous
phase is occurring at all points on the hillslope (Figure 4). The
slope-averaged chemical denudation rate Rc (LT

�1) is

Rc ¼ � �rs
rrl

Zl
0

h�Sv
�rs

dx: ð21Þ

[26] Carson and Kirkby [1972] argue that in humid
environments, soil depth h tends to increase away from
the divide, and in arid regions the soil thins away from the
divide. Recent work [e.g., Heimsath et al., 1997; Small et
al., 1999] has shown that soil production is a function of
soil depth, so if soil depth varies in space, so will soil
production. If soil production is the dominant mechanism
driving ph, then spatially varying soil production will
violate the assumption of steady topographic form because
the bedrock surface will be lowering at different rates at
different points on the hillslope. Furbish and Fagherazzi
[2001], however, proposed that the soil production function

may vary as a function of distance from the divide. It is
assumed here that soil production function does vary with x.
This variation is assumed to lead to spatially constant ph,
despite spatial variations in soil depth. The simplest
approximation of the soil depth that still can describe
whether it is thinning, thickening, or remaining constant
as a function of distance from the divide is

h ¼ mxþ h0; ð22Þ

where m (dimensionless) is the slope of the soil depth
function and h0 (L) is the soil depth at the divide.
[27] The depth-averaged mass loss rate due to chemical

processes must also be described. The spatial and temporal
distribution of mineral weathering, particularly in the va-
dose zone, is still largely unknown and is an area of active
research [e.g., Anderson et al., 2002; Egli et al., 2001;
Millot et al., 2002; Sander, 2002; Stonestrom et al., 1998;
White et al., 1999]. A spatially homogenous weathering rate
is simply assumed from the onset of the analysis in the work
of Small et al. [1999]. In this contribution we also assume
that the depth-averaged mass loss rate due to chemical
processes is spatially uniform over the hillslope, in the
interest of simplicity. A more general form of the local
lowering rate due to chemical processes is described in
Appendix C.
[28] Inserting equation (22) into equation (21) and inte-

grating gives

Rc ¼ �
�Sv
2rr

lmþ 2h0ð Þ: ð23Þ

A ratio between the chemical denudation rate and the total
denudation rate may be defined. This ratio, qd (dimension-
less), is named the denudation ratio:

qd ¼
Rc

Rc þ Rm

: ð24Þ

Equations (16) and (24) can be inserted into equation (23)
and solved for �Sv:

�Sv ¼ � 2RT qdrr
lmþ 2h0

: ð25Þ

3.3. Curvature, Slope, and Profile of the
1-D Steady State Hillslope

[29] When equations (22) and (25) are inserted into
equation (19), an equation for the curvature of the hillslope
as a function of distance from the divide may be found:

@2z
@x2

¼ ax� b; ð26aÞ

where

a ¼ 2RT qdrrm
D�rs lmþ 2h0ð Þ ð26bÞ

and

b ¼ rrRT

D�rs
1� 2qdh0

lmþ 2h0

� �
: ð26cÞ

[30] The local slope and land surface elevation of the
hillslope may be determined by applying the appropriate

Figure 4. Diagram of denudation balance. A linear
sediment transport law is shown. The quantity h�Sv varies
over the hillslope, so this quantity must be integrated over
the hillslope to find the chemical denudation rate.
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boundary conditions. The slope at the base may be found by
combining equations (20), (23), and (24):

@z
@x

�����
l

¼ �RTrrl
D�rs

1� qdð Þ: ð27Þ

If the slope at the lower boundary is zero, then there is no
mechanical transport out of the system. Such a hillslope
could be said to be ‘‘disconnected mechanically’’ from the
fluvial system and would have a denudation ratio of one.
[31] By integrating equation (26) and using the above

boundary condition (equation (27)), the equation for the
slope as a function of distance from the divide is found to be

@z
@x

¼ ax2

2
� bx; ð28Þ

where a and b were defined in equations (26b) and (26c).
The surface coordinate at the base of the hillslope is chosen
to be z(l) = 0. Integrating equation (28) gives the equation
for the surface of the hillslope:

z ¼
a x3 � l3
� �

6
�
b x2 � l2
� �

2
: ð29Þ

The maximum elevation on the hillslope will be at x = 0.

3.4. Features of the 1-D Steady State Hillslope

[32] The curvature of the hillslope is linear with respect
to distance from the divide when chemical denudation
or deposition is occurring in the hillslope soil. This is
a departure from the end-member case, when there is
no chemical denudation (qd = 0), where the curvature
is constant. There are several important features to
equation (26). In the end-member case, where there is no
chemical denudation (qd = 0), the curvature will be constant,
and the equation reduces to the familiar equation

D
@2z
@x2

¼ � rrRT

�rs
: ð30Þ

If the soil depth is not changing with distance from the
divide (m = 0), the curvature is again constant but is less
than the curvature found in the case of qd = 0:

D
@2z
@x2

¼ � rrRT

�rs
1� qdð Þ: ð31Þ

Equation (31) has the important implication that if one
measures the sediment diffusivity and estimates the soil
production rate without accounting for the chemical
denudation, one will underestimate (or overestimate, if
there is precipitation of solutes in the soil) the production
rate by a factor of (1 � qd).
[33] The curvature at the divide is

@2z
@x2

�����
x¼0

¼ � rrRT

D�rs
1� 2qdh0

lmþ 2h0

� �
: ð32Þ

For the curvature to be negative, or, in other words, for the
hillslope to be convex at the divide, the parameters must
satisfy the following condition:

2h0qd
lmþ 2h0

< 1: ð33Þ

For hillslopes in which there is either net chemical
deposition (qd is negative), or the soil thins with distance

from the divide (m is negative), or both, there may be
concave slopes at the divide. This would mean that the
greatest slope would be at the divide. Many hillslopes,
however, have soils that thicken away from the divide (m is
positive) and net chemical denudation (qd is positive), and
therefore most hillslopes that are both mechanically and
chemically weathering should be convex at the divide. This
is the same result as in the case of the hillslope that is
denuding through mechanical means only and is the typical
morphology of natural hillslopes in humid climates.
[34] If curvature is a linear function of distance from the

divide, it is possible that there will be a point some distance
from the divide where curvature equals zero and the hill-
slope transitions from negative to positive curvature or vice
versa. This point separates the convex portion of the hill-
slope from the concave portion of the hillslope. Setting the
curvature equal to zero in equation (26), the location of this
inflection point x (L) may be calculated:

x ¼ mlþ 2h0 1� qdð Þ
2mqd

: ð34Þ

There is no inflection point on hillslopes with x > l because
the predicted location of the inflection point lies farther
from the divide than the hillslope base. Such hillslopes will
be only concave or convex. When 0 < x < l, the hillslope is
convex-concave. The condition for a convex-concave slope
may be stated as

mlþ 2h0

2mlþ 2h0
< qd : ð35Þ

If 2h0 � ml, then qd will approach unity, and a convex-
concave slope may only be maintained at steady state if all
denudation is occurring through the mechanism of chemical
weathering. If 2h0 
 ml, then qd approaches 0.5. Thus the
chemical denudation rate must be at least as great as the
mechanical denudation rate if a convex-concave slope is to
exist at steady state.
[35] If the hillslope has a convex-concave form, the slope

with the maximum absolute value (Smax) will occur at the
inflection point. This slope is

Smax ¼

������ RT rr
D�rs

� �
2h0 1� qdð Þ þ ml½ 
2

4qdm mlþ 2h0ð Þ

�����: ð36Þ

3.5. Nondimensionalization

[36] In the analysis of sections 3.1–3.4, important quan-
tities such as the shape of the hillslope (z(x)), the maxi-
mum slope, the inflection point, and the curvature are
described in terms of several parameters. These relation-
ships can be collapsed into relationships between a smaller
number of parameters through nondimensionalization. All
terms that have dimension length may be scaled by the
hillslope length l:

z* ¼ z
l
; h* ¼ h

l
; x* ¼ x

l
;

x* ¼ x
l
; h* ¼ h0

l
;

ð37Þ
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where the asterisk indicates a dimensionless quantity. Two
timescales may also be identified. The first is the mean
residence time of a particle on the hillslope (TR (T)), which
is the average depth of the soil on the hillslope (hhi (L))
divided by the total denudation rate:

hhi ¼ 1

l

Zl
0

h0 þ mxð Þdx ¼ h0 þ
ml
2

ð38Þ

TR ¼ hhi
RT

: ð39Þ

Another timescale is the relaxation timescale. Fernandes
and Dietrich [1997] and Roering et al. [2001] explored this
numerically, but here we use the analytical relaxation
timescale that is commonly seen in the analysis of heat and
chemical diffusion as well as in the work of Furbish and
Fagherazzi [2001], Jyotsna and Haff [1997], and Koons
[1989]:

TD ¼ l2

D
: ð40Þ

The ‘‘diffusive’’ timescale TD (T) is the square of the system
size (in this case the hillslope length) times the inverse of its
diffusivity (which is a measure of the effectiveness of the
transport process). A nondimensional ratio may be defined
that is the ratio of the residence timescale to the diffusive
timescale:

qT ¼ TR

TD
: ð41Þ

This ratio will be called the transport ratio as it is a proxy for
the ratio of sediment entering the active layer to the
sediment transported through diffusion-like mechanical
processes. If no other parameters change, increasing the
total denudation rate will result in a smaller value of qT,
whereas increasing the diffusivity of the hillslope will
increase qT.
[37] Finally, a density ratio may be formed:

td ¼
�rs
rr
: ð42Þ

[38] Important quantities may now be recast in nondi-
mensional terms. The nondimensional inflection point is

x* ¼
m� 2h* qd � 1ð Þ

2mqd
: ð43Þ

The maximum slope as a function of nondimensional
parameters is

Smax ¼
m� 2h* qd � 1ð Þ
	 
2

8mqdqTtd
: ð44Þ

The equation for the nondimensional hillslope profile is

z* ¼
a* x3

*
� 1

� �
6

�
b* x3

*
� 1

� �
2

; ð45aÞ

where

a* ¼ qdm
qTtd

ð45bÞ

and

b* ¼
mþ 2h* 1� qdð Þ

2qTtd
: ð45cÞ

4. Discussion

4.1. Effect of Chemical Weathering on the
Morphology of Steady State Hillslopes

[39] In the end-member case, when both m and qd equal
zero, the hillslope profile will be parabolic and the curvature
will be uniform, as predicted qualitatively by Gilbert [1909].
This end-member hillslope morphology may be compared
with the morphology of hillslopes that experience chemical
weathering in the soil. Figure 5 shows morphologies of
hillslopes with varying denudation ratios and m values. If
all other parameters are constant, increasing denudation
ratios lead to gentler slopes and less relief. The hillslopes
that have chemical weathering diverge from the parabolic
shape of the end-member case (m = 0, qd = 0); for hillslopes
with spatially homogenous �Sv and finite m values the curva-
ture increases linearly as a function from the divide. The
increase is due to the linear increase in the local lowering rate
due to chemical denudation as a function of distance from the
divide, which is a result of the assumptions used in the
development of the governing equations. Appendix C
addresses the possibility of nonlinearities in the local soil
lowering rate due to chemical processes as a function of
distance from the divide. If m = 0 and qd is nonzero, hillslope
curvature will be constant and the profile will be parabolic as
in the end-member case of no chemical denudation, but the
presence of chemical denudation will reduce the relief and
will lead to gentler slopes than in the purely mechanical case.

4.2. Conceptual Explanation of the Steady State
Convex-Concave Hillslope

[40] Figure 6 shows the relationship between sediment
entering the active layer and sediment transport and removal
due to the two denudation mechanisms. If the total amount of
sediment dissolved chemically upslope of a point is increas-
ing less than the total amount of sediment entering the active
layer, then the amount of sediment that must be transported
mechanically is increasing at that point, and therefore the
hillslope will be steepening away from the divide. If,
however, the denudation ratio is >0.5, at some point on the
slope the amount of sediment denuded chemically will be
increasing faster than the amount of sediment entering the
active layer from upslope. Downslope of this point
the sediment transported mechanically must decrease in
the downslope direction, and the slope will become gentler,
giving concave topography.

4.3. Conditions for Steady State Hillslopes With
Convex-Concave Profiles

[41] Equation (43) may be used to predict the combina-
tions of dimensionless soil depth at the divide (h*), the rate
of increase in soil depth away from the divide (m), and the
denudation ratio (qd) that occur on steady state hillslopes
with convex-concave profiles. The parameter values of a
hillslope with an inflection point at the base of the hillslope
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can be represented as a surface. Two such surfaces are
shown in Figure 7. The surface in Figure 7a represents the
parameter values at which the inflection point is at the base
of the hillslope. Parameter values plotting below this surface
have convex-concave profiles at steady state. Hillslopes that
have higher denudation ratios and for which soil depth
increases faster away from the divide are favored to have
convex-concave slope profiles. Smaller values of the di-
mensionless soil depth at the divide, h*, also favor convex-
concave slope profile. Thus hillslopes with shallower soils
at the divide and longer slope lengths are more likely to
have convex-concave profiles at steady state. As noted by
inspection of equation (35), the value of the denudation
ratio must be >0.5 for a convex-concave slope to exist. A
hillslope with qd = 1, or, in other words, a hillslope in which
all the denudation is occurring through chemical means,
always has a convex-concave profile, and the inflection

points of these hillslopes are located halfway between the
divide and the outlet (x = l/2). Mechanical sediment
transport still functions on these hillslopes, and particles
entrained from the bedrock at and away from the divide still
move downslope, but the slope at the hillslope outlet is zero,
so the horizontal mechanical sediment transport there must
be zero, and all mass converted to soil from the underlying
bedrock is removed through chemical means as it moves
toward the base of the hillslope.

4.4. Transport Ratios for Steady State Hillslopes
With Convex-Concave Profiles

[42] We may assume that in many landscapes, climate and
tectonics combine to form an initial drainage network. If
these conditions then change, causing the drainage network
to retreat (that is, to decrease the drainage density or reduce
the total length of the channels in the fluvial system), the

Figure 5. Nondimensional (a) surface elevation, (b) slope, and (c) curvature for hillslopes with varying
parameter values.
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now unchanneled valleys will begin to fill with sediment. At
some time after the retreat of the drainage network, the
unchanneled valleys may relax to a steady state convex-
concave shape. In this situation the antecedent drainage
network has set the length of the hillslopes. The climatic
and tectonic regime that lead to the steady state unchanneled
valleys are also external influences that help to set the shape
of the hillslope. These external influences are contained
within the transport ratio qT along with the depth of the soil
at the divide and the soil depth increase away from the
divide (m), which are set by hillslope processes. For a range
of maximum slopes (Smax, or the slope at the inflection
point) and m values the transport ratio can vary over several
orders of magnitude. The predicted transport ratios (see
Figure 8) may be compared to physically realistic qT values.

4.5. Comparison of Theoretical Transport Ratios With
Transport Ratios Calculated From Field Data

[43] Physically realistic ranges of the transport ratio may
be obtained from measured values for diffusivities, total
denudation rates, hillslope length scales, and reasonable soil
parameters (Figure 8). The relatively small number of field
studies of hillslope diffusivities have reported values of D
ranging from order 10�4 to order 10�1 m2 yr�1 [see
Fernandes and Dietrich, 1997, Table 1]. More humid
regions will typically have higher values of D, although D
also depends on the biota, the temperature, and the nature of
sediment in a given landscape [Anderson, 2002].
[44] The upper range on exhumation rate is 1.0 �

10�2 m yr�1 [Burbank, 2002], but the most rapid docu-
mented chemical denudation rate is 5.8� 10�5 m yr�1 [White
et al., 1998]. Exhumation must balance denudation at
steady state. Because the mechanical denudation rate must
be less than the chemical denudation rate in order for a
convex-concave slope to be in steady state, the upper limit
on total denudation rate that allows this hillslope form is
�10�4 m yr�1. Such a denudation rate, although several
orders of magnitude lower than the fastest known denudation
rates, is nevertheless a rate of denudation that is representa-
tive of areas of active tectonics. The Oregon Coast Range
near the experimental site of Anderson et al. [2002] has
been estimated to have a long-term uplift rate (which
should be similar to the total denudation rate at steady state)
of 10�4 m yr�1. The lowest denudation rate is (trivially) zero,
but as a point of reference, the time-averaged uplift due to
tectonic flexure on the Atlantic margin of the United States is
estimated to be 2 � 10�6–1 � 10�5 m yr�1 [Pazzaglia and
Gardner, 1994].
[45] Hillslopes are typically tens to hundreds of meters

long. Soil depth can be zero, but the upper limit of soil
depth is harder to quantify. As researchers in the Amazon
basin have found rooting depths of 8 m [Nepstad et al.,
1994], and root growth causes mechanical disturbance of
the soil [e.g., Gabet et al., 2003], it is presumed that the
upper limit on soil depths is on the order of 10 m.
[46] With this information, physically meaningful values

may be established for TR, TD, and qT. For a very deep soil
and a total denudation rate similar to the estimated uplift
rate of the Atlantic margin of the United States, TR will be
on the order of 108 years. Low hillslope lengths and high
diffusivities give a TD of order 103 years and a qT of order
105. This value is several orders of magnitude larger than

the highest values calculated for qT in Figure 8. Therefore
the end-member combination of the residence and relaxa-
tion time will not have convex-concave slopes at steady
state. In landscapes with low total denudation and thick
soils, hillslopes must either be longer or have lower dif-
fusivities than the end-member hillslopes in order to have
steady state convex-concave slopes. With a hillslope length
of order 103 m and a diffusivity of 10�2 m2 yr�1 the TD
value will be of order 108 years, and qT will be of order
unity. This is in the range of qT values predicted in Figure 8
for slopes of low relief. Lowlands are, by definition, low-
relief landscapes. Steady state convex-concave hillslopes
of higher relief will have thinner soils, lower diffusivities,
shorter slopes, and faster total denudation rates. For
example, a hillslope with a total denudation rate of order
10�4 m yr�1, a diffusivity of order 10�3 m2 yr�1, an
average soil depth of order 1 m, and a length of order
100 m will have a qT value of 10�3. Table 1 shows the
values of qT for selected combinations of naturally occurring
soil depths, uplift rates, diffusivities, and hillslope lengths.

Figure 6. (a) Diagram of a convex-concave slope and the
denudation balance as a function of distance from the
divide. (b) The total sediment denuded chemically is a
nonlinear function of the distance from the divide. (c) Below
the inflection point the total amount of sediment denuded
chemically above x begins to increase more quickly than the
corresponding increase in total sediment entering the active
layer upslope, and the sediment that must pass through x
mechanically decreases with increasing distance from the
divide.
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[47] Some representative hillslope profiles are plotted in
Figure 9. These hillslopes range from high relief (Figure 9a),
to moderate relief (Figures 9b and 9c), to low relief
(Figure 9d). As shown in Figure 9, hillslopes with a wide
range of parameter values may have convex-concave pro-
files at steady state.

4.6. Occurrence of Hillslopes With
Denudation Ratios >0.5

[48] It is required that qd > 0.5 for the existence of steady
state hillslopes with convex-concave profiles. Is this condi-

tion physically realistic? In studies of river basin denudation
rates, Summerfeld and Hulton [1994] and Gaillardet et al.
[1997] found denudation ratios of 0.5 or greater (see Table 2).
As stated earlier, the highest measured chemical denudation
rate is on the order of 10�4 m yr�1. As local erosion rates can
be several orders of magnitude greater than the fastest
measured chemical denudation rate, if a basin includes one
or more subbasins that are undergoing rapid physical erosion,
this will skew the basin-averaged denudation ratio in favor of
mechanical erosion. We also note that chemical denudation
rates calculated by solute fluxes incorporate dissolution that

Figure 7. Dimensionless depth of soil at the divide (h*) for (a, b) hillslopes with an inflection point at
the hillslope outlet (x = l) and (c, d) hillslopes with an inflection point three quarters of the length of the
hillslope from the divide. Surfaces (Figures 7a and 7c) and contour plots (Figures 7b and 7d) are shown.
Any hillslope with a combination of h*, denudation ratio (qd), and rate of the increase of soil depth away
from the divide (m) that plots below the surface in Figure 7a has a convex-concave slope.
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occurs in both bedrock and the soil mantle. Nonetheless,
Anderson et al. [2002] found that chemical weathering is
more vigorous in soil than in bedrock due to the fact that more
water may flush the soil due to its higher porosity and because
minerals in the soil have larger available surface area for
reactions to occur.

5. Conclusions

[49] Chemical denudation can affect the curvature, slope,
and profile of hillslopes. Downslope changes in soil lower-
ing due to chemical processes will be reflected in the
hillslope morphology, leading to hillslopes that have differ-
ent relief, slope, and shape (e.g., nonparabolic) than hill-
slopes undergoing only diffusion-like sediment transport.
We have shown that hillslopes under certain conditions may
have a convex-concave profile at steady state. This is in
contrast to slopes only experiencing diffusion-like mechan-
ical sediment transport, wherein only slopes that are tran-
sient and are storing sediment at their base may have a
convex-concave profile. Hillslopes with a variety of lengths,

soil depths, variations in soil depth as a function of distance
from the divide, total denudation rates, sediment diffusiv-
ities, and density changes as soil is converted to bedrock
may have a convex-concave profile. An important condition
for the existence of a hillslope with a convex-concave
profile at steady state is that the chemical denudation rate
must exceed the mechanical denudation rate on the hill-
slope. Although there is evidence that chemical denudation
is greater than physical denudation in some large river

Figure 8. Contour plot of the transport ratio qT for an inflection point of (a) x* = 0.5 and (b–d) x* =
0.75 and dimensionless soil depth h* = 0.1 (Figure 8b), h* = 0.05 (Figure 8c), and h* = 0.001 (Figure 8d).
The density ratio td for these plots is 0.5.

Table 1. Values of the Transport Ratio (qT) For Naturally

Occurring Rates of Total Denudation (RT), Average Soil Depth

(hhi), Hillslope Length (l), and Sediment Diffusivity (D)a

qT RT, m yr�1 hhi, m l, m D, m2 yr�1
Convex-Concave
Profile Possible?

6.25 � 102 2 � 10�6 5 20 10�1 no
10�2 5 � 10�6 5 500 10�3 yes
10�4 10�4 1 100 10�3 yes

aNote that these values are slightly different than the end-member values
and have been chosen because they are presumably representative of a
larger number of natural hillslopes.
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basins, further work is required to quantify both mechanical
and chemical denudation rates at the hillslope scale. It will
be important at this scale to measure the chemical denuda-
tion that occurs in the soil as dissolution in the bedrock does
not directly affect the hillslope topography. Chemical
weathering in soils is an area of active research, but the
spatial variation in the local rate of soil lowering due to
chemical processes at the hillslope is not well understood.
Further research in this area is needed in order to better
understand the impact of chemical weathering on hillslope
morphology.

Appendix A

[50] The mean value theorem may be stated as, for
example,

�f ¼ 1

z� h

Zz
h

f x; y; z; tð Þdz ¼ 1

h

Zz
h

f x; y; z; tð Þdz; ðA1Þ

where the overbar denotes a depth-averaged quantity and f
is some function of position (x, y, and z) and time (t).
Leibniz’s rule may be stated as

Zz x;y;tð Þ

h x;y;tð Þ

@

@x
f x; y; z; tð Þdz ¼ @

@x

Zz x;y;tð Þ

h x;y;tð Þ

f x; y; z; tð Þdz

� f z x; y; tð Þ; x; y; tð Þ @z
@x

þ f h x; y; tð Þ; x; y; tð Þ @h
@x

: ðA2Þ

Appendix B

[51] Equation (13) allows one to track changes in the soil
depth h. In some cases, it may be more desirable to track the
change in surface elevation z. One method yielding a
relatively simple equation is carried out by multiplying

Figure 9. Hillslope profiles for various values of the transport ratio qT, dimensionless soil depth at the
divide (h*), rate of increase in soil depth away from the divide (m), and denudation ratio (qd). The value
of the density ratio td is 0.5 for all plots. Note the change in vertical scale. Black dots indicate the
inflection point (transition from negative to positive curvature). The curve in Figure 9a without a black
dot has a predicted inflection point at x* > 1.
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equation (8) by the depth-averaged dry bulk soil density (and
with the assumption of no horizontal tectonic velocities):

�rs
@h
@t

� �rsUzjh þ �rsph ¼ 0: ðB1Þ

Because the terms to the left of the equality in equation (B1)
equal zero, these terms may be added to equation (13).
Equation (6) is also inserted into the unsteady term in
equation (13) such that the soil depth h in this term is cast in
terms of z and h. The chain rule is then used to arrive at

�rs
@z
@t

þ h
@�rs
@t

þr2 � hqsð Þ � h�Sv � rr � �rsð Þph � �rsUz ¼ 0 ðB2Þ

or, in component form,

�rs
@z
@t

þ h
@�rs
@t

þ @

@x
hqsxð Þ þ @

@y
hqsy
� �

¼ h�Sv þ rr � �rsð Þph þ �rsUz:

ðB3Þ

Appendix C

[52] Equation (24) contains three terms which are local
rates of soil surface lowering due to mechanical sediment
transport, chemical denudation, and total denudation (which
has replaced soil production due to the steady state assump-
tions). By assuming spatial homogeneity of �Sv and a linear
increase in soil depth away from the divide the local rate of
soil lowering due to chemical weathering, rc (L T�1) was
cast as a linear function of distance from the divide:

rc ¼
h�Sv
�rs

¼ mxþ h0ð Þ�Sv
�rs

: ðC1Þ

A more general formulation could simply treat the local rate
of soil lowering due to chemical weathering as a power law
function of x:

rc ¼ axb þ r0; ðC2Þ

where a and b are empirical coefficients and r0 is the local
rate of soil lowering due to chemical weathering at the
divide. If b = 1, then equation (C2) reduces to equation
(C1), where

r0 ¼
h0�Sv
�rs

ðC3aÞ

a ¼ m�Sv
�rs

: ðC3bÞ

The chemical denudation rate may be calculated by
integrating the local chemical denudation rate, as done in
equation (26). This gives

Rc ¼ ��rs
rr

axb

1þ b
þ r0

� �
: ðC4Þ

Equation (29) may be inserted into equation (C4), which
may then be solved for r0:

r0 ¼ ��rs
rr
RT qd �

alb

1þ b
: ðC5Þ

Inserting equations (C5) and (C2) into equation (24) gives
the hillslope curvature:

@2z
@x2

¼ a
D
xb þ 1

D

rr
�rs
RT 1� qDð Þ � alb

1þ b

� �
: ðC6Þ

If the increase or decrease in r0 as a function of distance
from the divide is nonlinear, so too will be the curvature.
The empirical coefficients a and b may depend on many
factors, including, but not limited to, climate, hydrology,
and the kinetics of chemical reactions within the soil and are
a significant control on hillslope morphology. Recent
studies have begun to explore spatial variations in chemical
weathering at the hillslope scale [e.g., Green et al., 2003];
such studies may be used in the future to better parameterize
equation (C2).

Notation

a empirical coefficient for power law description
of soil surface lowering due to chemical
weathering as a function of x.

b empirical exponent for power law description
of soil surface lowering due to chemical
weathering as a function of x.

D sediment diffusivity (L2T�1).
dz deposition or erosion at surface of soil (LT�1).
h coordinate of the bedrock-soil interface (L).
h* dimensionless bedrock-soil interface coordi-

nate.
hbl elevation of soil-bedrock boundary with re-

spect to base level (L).
hl base-level elevation (L).
h soil depth (L).

hhi average depth of soil over a hillslope (L).
h0 depth of soil at hillslope divide (L).
K sediment diffusion coefficient (ML�1T�1).
l hillslope length (L).
m slope of soil depth as a function of distance

from divide (dimensionless).
ph rate of change of the elevation of the soil-

bedrock boundary under conditions of no
tectonic velocities (LT�1).

qs sediment flux vector (ML�2T�1).
qsx, qsy components of sediment flux vector in the x

and y directions, respectively (ML�2T�1).
rs dry bulk density of soil (ML�3).
�rs depth-averaged dry bulk density of soil

(ML�3).
rr dry bulk density of the material at the soil-

bedrock boundary (ML�3).

Table 2. Denudation Ratios (qd) From Selected River Basins

qd River Basin Location

0.857 Dnepra Ukraine, Belarus, Russia
0.759 Lenaa Russia
0.647 Oba Russia
0.944 St. Lawrencea Canada
0.783 Yeniseia Russia
0.5 Urucara (Amazon subbasin)b Brazil
0.5 Tapajos (Amazon subbasin)b Brazil

aFrom Summerfeld and Hulton [1994].
bFrom Gaillardet et al. [1997].
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rc local rate of soil surface lowering due to
chemical weathering (LT�1).

r0 value of rc at the divide (LT�1).
Rm mechanical denudation rate (LT�1).
Rs chemical denudation rate (LT�1).
RT total denudation rate (LT�1).

Smax absolute value of maximum slope (dimension-
less).

Sv chemical denudation and deposition
(ML�3T�1).

�Sv depth-averaged chemical denudation and de-
position (ML�3T�1).

TR relaxation timescale (T).
TD diffusive timescale (T).
qd denudation ratio (dimensionless).
qT transport ratio (dimensionless).
td density ratio (dimensionless).
U tectonic velocity vector (LT�1).

Ux, Uy, Uz components of the tectonic velocity vector in
the x, y, and z directions (LT�1).

vs sediment velocity vector (LT�1).
vsx, vsy, vsz components of sediment velocity vector in the

x, y, and z directions (LT�1).
�vsx, �vsy, �vsz depth-averaged components of the sediment

velocity vector in the x, y, and z directions,
respectively (LT�1).

z coordinate of the soil surface (L).
zbl coordinate of the soil surface relative to base

level (L).
z* dimensionless soil surface coordinate.
x location of hillslope inflection point (point of

zero curvature) (L).
x* location of inflection point (dimensionless).
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