38 research outputs found

    Mechanisms of Newcastle Disease Virus-Mediated Membrane Fusion: A Dissertation

    Get PDF
    For many paramyxoviruses, including Newcastle disease virus (NDV), syncytia formation requires the expression of both surface glycoproteins (HN and F) in the same cell, and evidence suggests that fusion involves a specific interaction between the HN and F proteins (23, 73). Because a potential interaction in paramyxovirus infected cells has never been clearly demonstrated, such an interaction was explored in Chapter 2 using coimmunoprecipitation and crosslinking. Both HN and F proteins could be precipitated with heterologous antisera after a five minute radioactive pulse as well as after a two hour chase in non-radioactive media, but at low levels. Chemical crosslinking increased detection of complexes containing HN and F proteins at the cell surface. After crosslinking, intermediate as well as high molecular weight species containing both proteins were precipitated with monospecific antisera. Precipitation of proteins with anti-HN after crosslinking resulted in the detection of complexes which electrophoresed in the stacker region of the gel, from 160-300 kD, at 150 kD and at 74 kD. Precipitates obtained with anti-F after crosslinking contained species which migrated in the stacker region of the gel, between 160-300 kD, at 120 kD and at 66 kD. The 3-4 discrete complexes ranging in size from 160-300 kD contained both HN and F proteins when precipitated with either HN or F antisera. That crosslinking of complexes containing both HN and F proteins was not simply a function of overexpression of viral glycoproteins at the cell surface was addressed by demonstrating crosslinking at early time points post infection, when levels of viral surface glycoproteins are low. Use of cells infected with an avirulent strain of NDV showed that chemically crosslinked HN and F proteins were precipitated independent of cleavage of F0. Furthermore, under conditions that maximized HN protein binding to its receptor, there was no change in the percentages of HN and F0 proteins precipitated with heterologous antisera, but a decrease in F1protein precipitated was observed upon attachment. These data argue that the HN and F proteins interact in the RER. Upon attachment of the HN protein to its receptor, the HN protein undergoes a conformational change which causes a subsequent change in the associated F protein, releasing the hydrophobic fusion peptide into the target membrane and initiating fusion. Chapter 3 explores the stalk region of the NDV HN protein, which has been implicated in both fusion promotion and virus specificity of that activity. The NDV F protein contains two heptad repeat motifs which have been shown by site-directed mutagenesis to be critical for fusion (7, 51, 57). Heptad repeat motifs mediate protein-protein interactions by enabling the formation of coiled-coils. Upon analysis of the stalk region of the NDV HN protein, we identified two heptad repeats. Secondary structure analysis of these repeats suggested the potential for these regions to form alpha-helices. To investigate the importance of this sequence motif for fusion promotion, we mutated the hydrophobic a position amino acids of each heptad repeat to alanine or methionine. In addition, hydrophobic amino acids in other positions were also changed to alanine. Every mutant protein retained levels of attachment activity that was greater than or equal to the wild-type protein and bound to conformation-specific monoclonal as well as polyclonal antisera. Neuraminidase activity was variably affected. Every mutation, however, showed a dramatic decrease in fusion promotion activity. The phenotypes of these mutant proteins indicate that individual amino acids within the heptad repeat region of the stalk domain of the HN protein are important for the fusion promotion activity of the protein. These data are consistent with the idea that the HN protein associates with the F protein via specific interactions between the heptad repeat regions of both proteins

    The Biosimilars Act: The United States’ Entry into Regulating Biosimilars and its Implications, 12 J. Marshall Rev. Intell. Prop. L. 322 (2013)

    Get PDF
    The Patient Protection and Affordable Care Act is most well-known for creating a mandate requiring individuals to have health insurance. However, another provision of the Act, the Biologics Price Competition and Innovation Act, created a new process for companies to introduce biosimilars, products that are highly similar to licensed drugs in terms of purity, safety, and potency, but have minor differences in the inactive ingredients. This provision seeks to alleviate strain on companies introducing biosimilars by creating an abbreviated pathway for their approval by the Food and Drug Administration, similar to an Abbreviated New Drug Application under the Hatch-Waxman Act. This article provides a comprehensive overview of the Biologics Price Competition and Innovation Act and contrasts it with the Hatch-Waxman Act and European Law on Biosimilars. Strategies for patent claiming and resolving patent disputes are then discussed

    Henipavirus Mediated Membrane Fusion, Virus Entry and Targeted Therapeutics

    Get PDF
    The Paramyxoviridae genus Henipavirus is presently represented by the type species Hendra and Nipah viruses which are both recently emerged zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These enveloped viruses bind and enter host target cells through the coordinated activities of their attachment (G) and class I fusion (F) envelope glycoproteins. The henipavirus G glycoprotein interacts with host cellular B class ephrins, triggering conformational alterations in G that lead to the activation of the F glycoprotein, which facilitates the membrane fusion process. Using the recently published structures of HeV-G and NiV-G and other paramyxovirus glycoproteins, we review the features of the henipavirus envelope glycoproteins that appear essential for mediating the viral fusion process, including receptor binding, G-F interaction, F activation, with an emphasis on G and the mutations that disrupt viral infectivity. Finally, recent candidate therapeutics for henipavirus-mediated disease are summarized in light of their ability to inhibit HeV and NiV entry by targeting their G and F glycoproteins

    Paramyxovirus Fusion and Entry: Multiple Paths to a Common End

    Get PDF
    The paramyxovirus family contains many common human pathogenic viruses, including measles, mumps, the parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the zoonotic henipaviruses, Hendra and Nipah. While the expression of a type 1 fusion protein and a type 2 attachment protein is common to all paramyxoviruses, there is considerable variation in viral attachment, the activation and triggering of the fusion protein, and the process of viral entry. In this review, we discuss recent advances in the understanding of paramyxovirus F protein-mediated membrane fusion, an essential process in viral infectivity. We also review the role of the other surface glycoproteins in receptor binding and viral entry, and the implications for viral infection. Throughout, we concentrate on the commonalities and differences in fusion triggering and viral entry among the members of the family. Finally, we highlight key unanswered questions and how further studies can identify novel targets for the development of therapeutic treatments against these human pathogens

    Detection of an interaction between the HN and F proteins in Newcastle disease virus-infected cells.

    Get PDF
    For many paramyxoviruses, including Newcastle disease virus (NDV), syncytium formation requires the expression of both surface glycoproteins (HN and F) in the same cell, and evidence suggests that fusion involves a specific interaction between the HN and F proteins. Because a potential interaction in paramyxovirus-infected cells has never been demonstrated, such as interaction was explored by using coimmunoprecipitation and cross-linking. Both HN and F proteins could be precipitated with heterologous antisera after a 5-min radioactive pulse as well as after a 2-h chase in nonradioactive medium, but at low levels. Chemical cross-linking increased detection of complexes containing HN and F proteins at the cell surface. After cross-linking, intermediate- as well as high-molecular-weight species containing both proteins were precipitated with monospecific antisera. Precipitation of proteins with anti-HN after cross-linking resulted in the detection of complexes which electrophresed in the stacker region of the gel, from 160 to 300 kDa, at 150 kDa, and at 74 kDa. Precipitates obtained with anti-F after cross-linking contained species which migrated in the stacker region of the gel, between 160 and 300 kDa, at 120 kDa, and at 66 kDa. The three to four discrete complexes ranging in size from 160 to 300 kDa contained both HN and F proteins when precipitated with either HN or F antisera. That cross-linking of complexes containing both HN and F proteins was not simply a function of overexpression of viral glycoproteins at the cell surface was addressed by demonstrating cross-linking at early time points postinfection, when levels of viral surface glycoproteins are low. Use of cells infected with an avirulent strain of NDV showed that chemically cross-linked HN and F proteins were precipitated independent of cleavage of F0. Furthermore, under conditions that maximized HN protein binding to its receptor, there was no change in the percentages of HN and F0 proteins precipitated with heterologous antisera, but a decrease in F1 protein precipitated was observed upon attachment. These data argue that the HN and F proteins interact in the rough endoplasmic reticulum. Upon attachment of the HN protein to its receptor, the HN protein undergoes a conformational change which causes a conformational change in the associated F protein, releasing the hydrophobic fusion peptide into the target membrane and initiating fusion

    Mutational Analysis of Heptad Repeats in the Membrane-Proximal Region of Newcastle Disease Virus HN Protein

    Get PDF
    For most paramyxoviruses, syncytium formation requires the expression of both surface glycoproteins (HN and F) in the same cell, and evidence suggests that fusion involves a specific interaction between the HN and F proteins (X. Hu et al., J. Virol. 66:1528–1534, 1992). The stalk region of the Newcastle disease virus (NDV) HN protein has been implicated in both fusion promotion and virus specificity of that activity. The NDV F protein contains two heptad repeat motifs which have been shown by site-directed mutagenesis to be critical for fusion (R. Buckland et al., J. Gen. Virol. 73:1703–1707, 1992; T. Sergel-Germano et al., J. Virol. 68:7654–7658, 1994; J. Reitter et al., J. Virol. 69:5995–6004, 1995). Heptad repeat motifs mediate protein-protein interactions by enabling the formation of coiled coils. Upon analysis of the stalk region of the NDV HN protein, we identified two heptad repeats. Secondary structure analysis of these repeats suggested the potential for these regions to form alpha helices. To investigate the importance of this sequence motif for fusion promotion, we mutated the hydrophobic a-position amino acids of each heptad repeat to alanine or methionine. In addition, hydrophobic amino acids in other positions were also changed to alanine. Every mutant protein retained levels of attachment activity that was greater than or equal to the wild-type protein activity and bound to conformation-specific monoclonal as well as polyclonal antisera. Neuraminidase activity was variably affected. Every mutation, however, showed a dramatic decrease in fusion promotion activity. The phenotypes of these mutant proteins indicate that individual amino acids within the heptad repeat region of the stalk domain of the HN protein are important for the fusion promotion activity of the protein. These data are consistent with the idea that the HN protein associates with the F protein via specific interactions between the heptad repeat regions of both proteins
    corecore