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ABSTRACT

For many paramyxoviruses , including Newcastle disease virus (NDV),

syncytia formation requires the expression of both surface glycoproteins (HN

and F) in the same cell , and evidence suggests that fusion involves a specific

interaction between the HN and F proteins (23 , 73). Because a potential

interaction in paramyxovirus infected cells has never been clearly

demonstrated , such an interaction was explored in Chapter 2 using

coimmunoprecipitation and crosslinking. Both HN and F proteins could be

precipitated with heterologous antisera after a five minute radioactive pulse as

well as after a two hour chase in non-radioactive media , but at low levels.

Chemical crosslinking increased detection of complexes containing HN and F

proteins at the cell surface. After crosslinking, intermediate as well as high

molecular weight species containing both proteins were precipitated with

monospecific antisera. Precipitation of proteins with anti-HN after crosslinking

resulted in the detection of complexes which electrophoresed in the stacker

region of the gel , from 160-300 kD , at 150 kD and at 74 kD. Precipitates

obtained with anti-F after crosslin king contained species which migrated in the

stacker region of the gel , between 160-300 kD , at 120 kD and at 66 kD. The 3-

discrete complexes ranging in size from 160-300 kD contained both HN and F

proteins when precipitated with either HN or F antisera. That crosslinking 



vii

complexes containing both HN and F proteins was not simply a function of

overexpression of viral glycoproteins at the cell surface was addressed by

demonstrating crosslinking at early time points post infection , when levels of

viral surface glycoproteins are low. Use of cells infected with an avirulent strain

of NDV showed that chemically crosslinked HN and F proteins were

precipitated independent of cleavage of FO' Furthermore , under conditions that

maximized HN protein binding to its receptor , there was no change in the

percentages of HN and Fa proteins precipitated with heterologous antisera , but

a decrease in F protein precipitated was observed upon attachment. These

data argue that the HN and F proteins interact in the RER. Upon attachment of

the HN protein to its receptor, the HN protein undergoes a conformational

change which causes a subsequent change in the associated F protein

releasing the hydrophobic fusion peptide into the target membrane and

initiating fusion.

Chapter 3 explores the stalk region of the NDV HN protein , which has

been implicated in both fusion promotion and virus specificity of that activity.

The NDV F protein contains two heptad repeat motifs which have been shown

by site-directed mutagenesis to be critical for fusion (7 , 51 , 57). Heptad repeat

motifs mediate protein-protein interactions by enabling the formation of coiled-

coils. Upon analysis of the stalk region of the NDV HN protein , we identified

two heptad repeats. Secondary structure analysis of these repeats suggested

the potential for these regions to form alpha-helices. To investigate the
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importance of this sequence motif for fusion promotion , we mutated the

hydrophobic " " position amino acids of each heptad repeat to alanine or

methionine. In addition , hydrophobic amino acids in other positions were also

changed to alanine. Every mutant protein retained levels of attachment activity

that was greater than or equal to the wild-type protein and bound to

conformation-specific monoclonal as well as polyclonal antisera.

Neuraminidase activity was variably affected. Every mutation , however, showed

a dramatic decrease in fusion promotion activity. The phenotypes of these

mutant proteins indicate that individual amino acids within the heptad repeat

region of the stalk domain of the HN protein are important for the fusion

promotion activity of the protein. These data are consistent with the idea that

the HN protein associates with the F protein via specific interactions between

the heptad repeat regions of both proteins.
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CHAPTER 

Introduction

The process by which enveloped viruses are able to mediate membrane

fusion has long been a question in virology. The purpose of this thesis is to

explore the mechanisms governing this event using the paramyxovirus

Newcastle disease virus (NDV) as a model system. The viral hemagglutinin-

neuraminidase (HN) protein and the fusion (F) protein were investigated in

order to elucidate their roles in the fusion event.

Molecular biology. Paramyxoviruses are enveloped , negative stranded RNA

viruses that are spherical or pleiomorphic in shape (31). The paramyxovirus

family consists of 4 genera: paramyxovirus (Sendai virus (SeV) , human

parainfluenza viruses (hPIV) 1 and 3), rubulavirus (simian virus 5 (SV5), mumps

virus (MuV), NDV, and hPIV 2), morbillivirus (measles (MV)), and pneumovirus

(respiratory syncytial virus). Most rubulavirus genomes encode 7 proteins: the

nucleocapsid (NP) protein , the phosphoprotein (P), the large (L) protein , the

matrix (M) protein , the small hydrophobic protein (SH), the HN protein , and the F

protein. The NP protein encapsidates the RNA genome , associates with the

viral polymerase during replication , and may interact with the M protein during

assembly. The L protein , along with the P protein , is thought to form the viral

polymerase. The P protein also forms a complex with the NP protein , which is



likely active in genomic encapsidation. The M protein lies on the inner leaflet of

the virion phospholipid bilayer. This protein can self-associate and may be the

driving force in the budding of progeny virions from the plasma membrane (50).

The SH protein is an integral membrane protein of unknown function. This

protein is present in MV and MuV but has not been identified in NDV. The virion

lipid bilayer contains two glycoprotein spikes-the F protein and the HN protein.

The F protein serves to mediate viral fusion , while the HN protein has three

activities: neuraminidase (NA) activity, attachment (HA) activity, and an

undefined role in fusion termed fusion promotion.

Glycoprotein structure. The F protein is a type I integral membrane protein with

a carboxy terminal cytoplasmic tail , a transmembrane domain , and an

.:::'

I:.

ectodomain (Fig. 1A) (reviewed in (31)). It is synthesized as an inactive
;;1,

precursor termed Fa which is cleaved in the trans Golgi in virulent virus strains

such as NDV AV to form an active fusogenic protein containing disulfide- linked
I:::

and F subunits. Cleavage results in the exposure of a hydrophobic peptide

,;::

at the new amino terminus termed the fusion peptide. Immediately carboxy

terminal to the fusion peptide is a heptad repeat motif termed heptad repeat 

(HR1). A second heptad repeat region (HR2) is located just amino terminal to

the putative transmembrane domain. The oligomeric structure of the F protein

has been shown to be a homotrimer.

The HN protein is a type II integral membrane glycoprotein with an

amino terminal cytoplasmic tail , a transmembrane domain and a large



ectodomain (Fig. 1 B) (reviewed in (31)). It contains a signal sequence for

translocation into the ER which also functions as a transmembrane domain.

The HN protein of NDV strain AV is a homooligomer made up of two disulfide

linked monomers which interact noncovalently to form a tetramer. The HN

protein of the avirulent B1 strain does not contain disulfide linked monomers

, I

although a tetramer is formed. The three dimensional structures of the HN and

F proteins have not been solved , but the tertiary structure of the HN protein is

thought to resemble the influenza NA protein (15 , 34).

Membrane fusion. Enveloped viruses enter cells via two different

mechanisms-acid pH-dependent and acid pH-independent fusion. During

acid pH-dependent fusion , the virus is endocytosed and membrane fusion

occurs between the virion membrane and the endosomal membrane upon

exposure of the virion to acid pH (Fig. 2 , Part 1). Viruses such as influenza

:;!

viruses , flaviviruses , rhabdoviruses , and alphaviruses enter the cell in an acid-

dependent manner. Viruses such as retroviruses and paramyxoviruses enter

cells via an acid pH- independent pathway whereby the virion fuses with the

lipid bilayer of the target cell at the plasma membrane (Fig. 2 , Part 2). Viruses

that infect cells in a pH- independent manner may also infect cells by fusion

between the infected cell and a neighboring uninfected cell (Fig. 2 , Part 3). This

fusion event results in the formation of multinucleated cells or syncytium , and is

a major cytopathic effect mediated by paramyxoviruses (30).



.,. -

Viral fusion is thought to occur in several steps (reviewed in (41)). The

first step is binding of the attack cell membrane to the target cell membrane via

a protein scaffold (Fig. 3A). This step is mediated by the binding of the viral

attachment protein to its receptor. This is followed by a close approach or

dimpling of the target and attack membranes which is thought to be mediated

by the viral fusion protein (Fig. 3B). The third step, hemifusion , occurs when the

outer leaflets of the phospholipid bilayers from the target and attack

membranes are mixed (Fig. 3C). Hemifusion is thought to take place

spontaneously due to local tensions and attractive forces between the

membranes. The next step is the formation of an early fusion pore (Fig. 3D)

which can rapidly open and close (flicker) or expand into a late fusion pore

which can no longer flicker and close (Fig. 3E). This is followed by the last step

in the process , complete fusion (Fig. 3F). This final step involves a complete

expansion of the fusion pore and results in the release of the attack cell or

virion contents into the target cell.

Influenza virus-mediated membrane fusion. Influenza virus is an enveloped

virus that infects cells by an acid pH-dependent membrane fusion event.

Influenza-mediated membrane fusion is directed by its surface glycoprotein

hemagglutinin (HA) (59 , 60 , 69). The HA protein , like the F protein , is a

homotrimer which consists of two subunits , HA 1 and HA2 , and is synthesized

as a fusion- inactive precursor termed HAO. In the first step of fusion , the HA 

subunit binds to its receptor at the plasma membrane at a neutral pH



(Influenza-mediated fusion reviewed in reference (32)). The bound virion 

then endocytosed , and , upon exposure to acid pH , conformational changes are

triggered in both the HA 1 and HA2 subunits of the protein. The HA2 subunit

rearranges into a long, triple-stranded coiled-coil which repositions the

hydrophobic fusion peptide toward the membrane of the target cell. The

insertion of the fusion peptide into the target cell enables the second step of

fusion , close approach , to occur. It has been proposed that after HA2 binding

to the attack membrane , a simultaneous bending of several trimers may pull

the attack and target membranes together, resulting in close approach (69). 

lag phase ensues at this point which is dependent upon time , temperature

and the density of HA proteins in the attack membrane. It is thought that this

lag is caused by the need to recruit a minimum number of HA proteins to the

fusion complex. After the lag phase , the next step of fusion , hemifusion

ensues. After hemifusion , the formation of the early fusion pore occurs. This

pore may rapidly open and close and has been observed by the detection of

flickering of pore conductances. The pore may then widen into a narrow pore

followed by an expansion into a dilated pore (late fusion pore). Studies with

.. 

recombinant HA proteins containing a glycophosphatidylinositol anchor instead

of a cytoplasmic tail have shown that only mixing of the outer membranes of the

bilayers occurred and no mixing of the inner membranes or aqueous contents

was detected , implying that the cytoplasmic tail is involved in formation of the

fusion pore (28). It has been hypothesized that the expansion into a dilated



pore may be facilitated by bending of the HA trimers in order to relax the

extreme curvature of the membranes. The role of influenza proteins in

complete fusion , the final step of the process , is unknown.

HIV- 1-mediated membrane fusion. HIV- 1 is a virus that infects cells in a pH

independent manner at the plasma membrane. The HIV surface glycoprotein

contains two components, the membrane bound gp41 , which is responsible

for membrane fusion , and a non-covalently associated gp120 , which serves as

the attachment protein (11 , 29). Like influenza HA and paramyxovirus F

proteins , the HIV-1 glycoprotein is synthesized as an inactive precursor , gp160

which must be proteolytically processed to be fusogenic. gp120 initiates fusion

by binding to CD4. This causes a conformational change in the gp 120 subunit

which exposes or creates a binding site for specific chemokine receptors.

Binding to CD4 also causes conformational changes in gp41 which promotes

the formation of a coiled-coil. The formation of this presumably fusion active

coiled-coil conformation is thought to occur via an interaction between two

alpha-helical heptad repeat regions , resulting in the formation of a six helical

bundle (11). The fusion peptide , located at one end of this coiled-coil structure

is then able to insert into the target membrane , leading to the close approach

of the virion and target membranes. The role of gp120 and gp41 in other

stages of membrane fusion is unclear.

Paramyxovirus-mediated membrane fusion. NDV-mediated membrane fusion

is a leading example of a viral two component system whereby two separate



proteins are thought to cooperate in fusion promotion. The paramyxovirus 

protein has been shown to bind a sialic acid containing receptor (31). After

binding, one model postulates that the HN protein triggers a conformational

change in the F protein causing its hydrophobic fusion peptide to be released

into the target cell and promoting close approach (30). Tight regulation of the

release of the fusion peptide is thought to be a critical step in fusion because

premature release has been hypothesized to result in the aggregation and

therefore inactivation of the fusion protein.

After release of the fusion peptide into the target membrane , the next

step in fusion is hemifusion. Although the mechanism of hemifusion in

paramyxovirus-mediated fusion is unclear, it appears that the heptad repeat

regions of the F protein may playa role. Peptide inhibition studies from SV5

show that synthetic peptides with sequences from the HR2 region of the F

protein block this lipid mixing step. Because HR2 peptides have been found to

self associate (unpublished observations), these results imply a role for HR2

in hemifusion (26). The HR1 region may also be involved in hemifusion as

recent reports using both NDV and SV5 systems have shown that peptides

corresponding to HR1 and HR2 functionally interact (3 , 26 , 75).

The involvement of paramyxovirus glycoproteins in the formation of early

and late fusion pores is not well understood. While the exact mechanism of

complete fusion is unclear, SV5 F proteins containing truncated cytoplasmic

tails were reported to be deficient in cytoplasmic content mixing, suggesting



that this region of the F protein is necessary for the latter steps of fusion to

occur (2). Complete fusion may also be quantitated in paramyxoviruses by

observing syncytia formation. Mutations in the cytoplasmic tail region of the

NDV F protein were found to negatively affect syncytia formation , supporting the

SV5 results (57). Whether other proteins are involved in paramyxovirus-

mediated membrane fusion is unknown (30).

Regions of the F protein that are critical for fusion. Mutational analyses of the

NDV F protein have shown that many regions of the protein are critical for

fusion. Mutations in the amino terminus of the F subunit affected cleavage of

the Fa protein and thus inhibited fusion (43). Mutational analyses of the highly

conserved heptad repeat regions HR1 and HR2 were found to abolish fusion

as well (7 , 52 , 58). The cytoplasmic tail region was also determined by

mutagenesis to be critical for fusion (2 , 57). Mutagenic studies of the fusion

peptide have shown that this region is important for fusion as proteins

containing mutations in this region fuse better than the wild-type protein (22),

while other mutations block fusion (58).

Evidence for HN involvement in membrane fusion. Early research with SeV

gave the first clues to the mechanism of paramyxovirus-mediated membrane

fusion. At this time , it was known that the paramyxovirus F protein promoted

viral fusion and that the HN protein served to bind the virion to its receptor. 

was suspected , however, that the HN protein might playa role in membrane

fusion along with the F protein. Circular dichroism studies of reconstituted



membrane vesicles containing HN and F proteins showed that the spectra of

vesicles containing the HN protein alone or the F protein alone differed from the

spectra obtained when the HN and F proteins were present in the same

vesicles (13). These data suggested that a conformational change occurred in

the HN and/or F proteins when they were present together in the same vesicle

implying a possible interaction between the proteins.

For NDV, it was discovered that the HN and F proteins were necessary

and sufficient for syncytia formation to occur (42). This was found to be the

case with other"paramyxoviruses as well (with the exception of SV5 and

perhaps RSV) (20 , 27 , 30). It was determined that another viral attachment

protein could not complement the NDV F protein in order to permit fusion (42).

Furthermore , Hu et al. (24) found that the HN and F proteins from the

paramyxoviruses hPIV2 and hPIV3 must be from the same virus to cause

syncytium formation. Such evidence for a virus-type specificity implied that

direct interactions may occur between the HN and F proteins from the same

virus.

Recent work from several laboratories has also supported the notion

that the virus specificity of the HN protein is mediated by the stalk region. Deng

et al. constructed chimeric HN proteins where regions of hPIV3 and NDV were

interchanged (17). They found that the transmembrane domain as well as a

portion of the presumed stalk region were necessary determinants in F

specificity for fusion. Another study of chimeras between PIV2 and SV41



reported that both the presumed stalk domain as well as the globular head

region of the HN protein conferred F specificity (67). A third study with SeV-

hPIV3 chimeric proteins also determined that the presumed stalk region was

necessary for F protein specificity leading to fusion (62) 

The initial interpretation of virus specificity has been questioned by

several reports. Experiments performed using cotransfected cells expressing

the hPIV3 F protein and either SV5 HN , SeV HN , or MV H proteins showed a

downregulation of attachment protein expression (63). Downregulation was

not observed when the homologous hPIV3 proteins were expressed , however.

Further, when the attachment proteins were coexpressed with an hPIV3 F

protein containing an ER retention signal , there was a downregulation of

surface expression for the heterologous attachment proteins that was even

more pronounced than was observed in the presence of the wild-type hPIV3 F

protein , as well as a downregulation of surface expression of the homologous

HN protein. These results suggested that heterotypic HN/H and F proteins may

interact in the ER and that this interaction leads to the downregulation of the

heterotypic attachment protein.

Another report also suggested that an early interaction between

heterologous HN and F proteins leads to a downregulation of the HN protein.

Bousse et al. noted that when hPIV1 F was overexpressed in transfected cells

expressing SeV or hPIV1 HN proteins , there was a downregulation of both the

homologous and heterologous HN proteins at a time point consistent with an



effect on translation or an early stage of protein folding (5). The SeV F protein

did not downregulate the hPIV1 HN protein , suggesting that downregulation is

not mediated by all paramyxovirus F proteins in the presence of a heterologous

HN protein. This report differs from the report by Tanaka et al. because of the

observation of a homologous downregulation.

A third group investigated heterologous downregulation by coexpressing

an hPIV3 F protein containing an ER retention signal with an hPIV2 HN protein

in transfected cells (65). This group observed a downregulation of the

heterologous HN protein which was consistent with an early block in protein

synthesis or protein misfolding.

Shortly after these results were published other reports came to very

different conclusions. Work from Yao et al. demonstrated that hPIV2 HN could

coimmunoprecipitate hPIV2 F protein at the plasma membrane , but not SeV F

or SV5 F proteins (73). Furthermore , hPIV3 HN protein could

coimmunoprecipitate hPIV3 F protein but not hPIV2 protein although all three

proteins were expressed at the plasma membrane. Antibody cocapping

experiments supported the coimmunoprecipitation results. The authors

concluded that there was evidence only for a homologous interaction between

the HN and F proteins at the cell surface. Another group, Paterson et aI. , found

that SV5 and HPIV3 F and HN proteins with an ER retention signal could not

retain the respective homotypic HN or F protein in the ER (49). The authors

concluded that there was no intracellular interaction between the HN and F



proteins and speculated that the association may occur instead at the plasma

membrane.

Why there are so many conflicting reports about potential HN/H-

protein-protein interactions is not clear. The reports from Deng et al. (17),

Tsurudome et al. (67), Tanabayashi et al. (62), Yao et al. (74), and Paterson et

al. (49) did not communicate a downregulation of the attachment protein

caused by a heterologous F protein. Whether this phenomena was not

observed or simply was not reported is unknown. Bousse et al. (5) reported

that no downregulation was observed for the hPIV1 HN protein when it was

coexpressed with the SeV F protein. This is interesting because it suggests

that the downregulation phenomena may not be a mechanism utilized by all

paramyxoviruses to prevent heterologous fusion.

The first research which provided evidence for a potential HN/HA-

protein-protein interaction was conducted with MV (38). MV proteins expressed

at the plasma membranes of transfected cells under the control of a vaccinia

virus vector were chemically crosslinked. It was found that MV HA and F

proteins could be crosslinked , but that the Fa protein was not a component 

this crosslinked complex. Similar experiments using SV5 infected cells were

reported with no detection of an HN-F protein interaction (53). The first account

of an HN-F protein interaction in the absence of chemical crosslinkers was

reported by Yao et al. (74) who utilized a vaccinia driven transfection system to

coimmunoprecipitate PIV2 HN and F proteins at the plasma membrane. We



addressed the question of an HN-F protein interaction using NDV- infected

cells. This work is presented in Chapter 2. Recently, Deng et al. also used a

vaccinia driven transfection system to study a potential NDV HN-F protein

interaction (16).

Motifs in fusion roteins. Various proteins from diverse systems are involved in

membrane fusion such as vesicle trafficking, neurotransmitter release , egg

fertilization , and viral fusion (41). Fusion proteins involved in membrane

trafficking and viral fusion have been well studied and , while they differ greatly,

the proteins involved share two common features-they contain a hydrophobic

fusion peptide , and this peptide is located at the end of a long bundle of alpha

helices (60). As mentioned above , HIV- 1 and influenza undergo structural

rearrangements upon triggering of fusion which convert non-helical regions of , i

, .

the proteins into alpha helical coiled-coils. In the well characterized vesicle

trafficking system , three cellular proteins make up a minimum fusion complex

N-ethylmaleimide sensitive factor (NSF), soluble NSF attachment protein

(SNAP), and the SNAP receptor (SNARE) (60). Upon forming a core complex

, '

regions of the SNAP and SNARE proteins convert from being relatively

unstructured to containing an alpha helical structure that is very stable. The

conservation of the coiled-coil motif in fusion proteins from systems as diverse

as viral fusion and membrane trafficking argues that coiled-coils are critical for

fusion.



The formation of coiled-coils is mediated by regions of proteins

containing heptad repeats (10 , 37). A heptad repeat is a motif in which a

hydrophobic amino acid is repeated every seven residues designated a

through g (37). Heptad repeat regions containing hydrophobic or neutral

residues in the a- and d-positions may impart an alpha helical structure in that

portion of the protein and thus enable protein-protein interactions via the

formation of coiled-coils (37). In recent years , mutagenesis as well as peptide

inhibition studies of many viral fusion proteins have shown that heptad repeats

are critical for fusion (7 , 31 , 51 , 70 , 71 , 73 , 75), and indeed , are important motifs

in many diverse proteins (37). Interestingly, the HN protein of NDV contains

several heptad repeat regions. One such repeat spans the presumed

transmembrane region of the protein and was determined by mutagenesis to

be critical in fusion promotion as well as oligomerization of the protein (40).

Chapter 3 of this thesis investigates the importance of another heptad repeat
I' c.

region in the presumed stalk domain of the HN protein for fusion promotion.
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Legend to Figure 1. Schematic representation of the primary amino acid
sequence of the F and HN proteins.
A. The NDV F protein. B. The NDV HN protein. The amino termini are to the
left and the carboxy termini are to the right. SS, disulfide bond; HR, heptad

repeat domain; TM, transmembrane domain; FP , fusion peptide; cs, cleavage

site; tail, cytoplasmic tail domain.
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Legend to Figure 2. Acid-dependent and independent membrane fusion. 1. (A)
The first step of acid-dependent fusion is binding of the virus to its receptor on
the host cell. (B) The next step is endocytosis. (C) The final step is membrane
fusion which occurs in an endosomal compartment upon exposure to acid pH
and results in the release of genetic material from the virus into the cytoplasm of
the host cell. 2. (A) The first step of acid- independent fusion is binding of the
virus to its receptor on the host cell. (B) The next step is membrane fusion
between the virus and the host cell at the plasma membrane resulting in the
release of viral genetic material into the cytoplasm. 3. A cell infected with a
virus that is capable of pH-independent membrane fusion may fuse with
uninfected neighboring cells. (A) Attachment of an infected (attack) cell to an
uninfected (target) cell. (B) Fusion of attack and target cells to form a
syncytium. N , nucleus; V , virion; E , endosome.



Legend to Figure 3. Steps of viral fusion. (A) Binding of attack to target cell. (B)
Close approach of outer leaflets. (C) Hemifusion. (D) Formation of an early
fusion pore. (E) Formation of a late fusion pore. (F) Complete fusion. B , lipid
bilayer; A , attachment protein; inner leaflet of plasma membrane; OL , outer
leaflet of plasma membrane; N , nucleus.



CHAPTER 2

DETECTION OF AN INTERACTION BETWEEN THE HN AND F PROTEINS IN

NEWCASTLE DISEASE VIRUS- INFECTED CELLS

This chapter was published in Journal of Virology in Sept. , 1997 essentially as

presented here , accounting for some duplication in background and

discussion presented in Chapter 1 and Chapter 4.

Introduction

The paramyxovirus Newcastle disease virus (NDV) encodes two surface

glycoproteins , the hemagglutinin-neuraminidase or HN protein and the fusion

or F protein. The HN protein has neuraminidase activity, attachment activity,

and an undefined role in fusion. The only known function of the F protein is to

mediate fusion. As in several paramyxovirus systems (reviewed in (30)), it has

previously been shown that the HN and F proteins of NDV are both necessary

and sufficient for fusion. Other viral attachment proteins such as influenza HA

cannot complement the NDV F protein to permit fusion (42). Early research

with reconstituted Sendai virus envelopes found that only envelopes containing

both HN and F proteins were able to fuse with membranes or vesicles (13).



Furthermore, the circular dichroism spectra of vesicles containing both HN and

F proteins differed from the spectra obtained with F protein alone; HN protein

alone or vesicles containing F protein or HN protein that were mixed

suggesting a conformational change , and , therefore, an interaction , when both

proteins are present in the same membrane. More indirect support for the idea

of an interaction came from work which showed that HN and F proteins must

be from the same virus for fusion to result (24). Recent work from several

laboratories supports the idea that the stalk domain of the HN protein

determines F protein specificity for fusion (17 , 62 , 67). The first direct

demonstration of an interaction was in the measles system where Malvoisin

and Wild (38) used a vaccinia expression system to assay for possible HA-

protein interactions. Using this system , Malvoisin and Wild chemically

crosslinked a complex at the cell surface which contained HA and F 1 proteins.

Recently, homotypic HN and F proteins were coprecipitated from the surfaces

of cells expressing these parainfluenza proteins using vaccinia virus vectors as

well (74).

Because of evidence which suggested an interaction between HN and F

proteins , we have explored their association during NDV infection since there

have been no reports of such an interaction in naturally infected cells. We were

able to demonstrate an interaction between the HN and F proteins in NDV

infected cells using coimmunoprecipitation and chemical crosslinking. 

report that a complex between HN and F proteins could be immunoprecipitated



with antisera against either protein , and this complex could be stabilized by

chemical crosslinking. Precipitation of this complex was not dependent upon

cleavage of FO into F1 and F2' the complex did not dissociate immediately after

HN protein attachment to uninfected cells , nor was it dependent upon

attachment of the HN protein to its receptor.

. i
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Materials and Methods

Cells and viruses. Cos-7 cells, obtained from the American Type Culture

Collection , were maintained in Dulbecco s modified Eagle medium (DMEM)

supplemented with nonessential amino acids , vitamins

penicillin/streptomycin , and 10% fetal calf serum.

NDV strain Australia-Victoria (AV) and NDV strain B1 were grown and

purified as previously described (21).

Infections. 5x105 Cos-7 cells were plated on 35 mm tissue culture plates in

DMEM. 16-20 hours after plating, the cells were infected with either the AV or

B1 strain of NDV at a multiplicity of infection of 10. The virus was adsorbed for

30 minutes at 37 before additional DMEM supplemented with CaCI2 was

added. The infection was allowed to proceed for an additional 4.5 hours at

Antibodies. Monoclonal antibodies specific for NDV HN were a generous gift of

. Dr. Ron Iorio. Antibodies used were anti- , anti- , anti-3a and anti-4a (25).

Polyclonal antisera specific for NDV F was raised against a peptide with the

sequence of the carboxy terminus of the F protein (56). Polyclonal antisera

specific for NDV HN was a mixture of antisera raised against peptides with the

sequence from amino acids 117 to 515 and amino acids 117 to 268 of the HN

protein (56).



Radiolabelin sis and immuno reci itation of rotein. At five hours post-

infection , cells were radiolabeled for fifteen minutes at 37 in DMEM containing

70% of the cysteine of standard media and lacking methionine. The labeling

media contained 11 mCi/mL 35S- thionine 35S-cysteine (EXPRE35S35S

New England Nuclear). The cells were then chased in non-radioactive media

for two hours. For five minute pulse-chase experiments , the cells were

incubated in media lacking methionine for twenty minutes prior to the label.

These cells were then chased in non-radioactive media containing 0. 1 mg/mL

cycloheximide and 2 mM non-radioactive methionine for various lengths of

time. At the end of the chase period , cells were washed twice in phosphate

buffered saline (PBS) and lysed.

Two different lysis conditions were used for coimmunoprecipitation and

chemical crosslinking experiments. For coimmunoprecipitation , the monolayer

was lysed in RSB buffer (0. 01 M Tris-HCI , pH7.4 , 0. 01 M NaCI) containing 0.

sodium deoxycholate , 2. 5 mg/mL N-ethylmaleimide (NEM), 2 mg/mL

iodoacetamide , and 13 mM Chaps on ice. After crosslinking, the monolayer

was lysed in RSB buffer containing 0.5% sodium deoxycholate , 2. 5 mg/mL

NEM , 2 mg/mL iodoacetamide and 1 % Triton. After lysis , the nuclei were

removed by centrifugation.

For immunoprecipitation of NDV proteins , infected cell Iysates were

incubated with antisera for one hour at room temperature. Fixed , killed

staphylococcus aureus (SA) cells (Boehringer Mannheim) resuspended in



PBS, 0. 5% polyoxyethylenesorbitan monolaurate and 
mg/mL bovine serum

albumin were added to the lysate in the presence of 0.
15-0.4% sodium dodecyl

sulfate (SDS) and incubated at room temperature with agitation for thirty

minutes. The SA cells were pelleted and the supernatants were removed. The

pellets were washed three times with PBS
, 1 % Triton X-100 , 0.5% sodium

deoxycholate and 0. 1 % SDS. The SA cells were then resuspended in sample

buffer and stored at - until analysis by SDS-polyacrylamid gel

electrophoresis (PAGE).

Chemical crosslinkin . Crosslinking was accomplished by a modification of

the procedure described by Russell et al (53). Radiolabeled, infected cell

monolayers were washed two times in PBS , pH 8. , and then incubated with

dithiobis(sulfosuccinimidylpropionate) (DTSSP--Sigma) ranging from 0.

to 1.0 mM in PBS, pH 8. , for one hour at 4 . The crosslinker was quenched at

with 74 mM glycine for five minutes and the cells were washed with PBS
, pH

, and lysed with Triton X-100 containing lysis buffer at 40 . Extracts were

immunoprecipitated as described above and analyzed by SDS-
PAGE. For

analysis of large, crosslinked species, two dimensional SDS-
PAGE was

utilized. Immunoprecipitates were electrophoresed under non-reducing

conditions and individual lanes were cut from the gel and incubated in run

buffer containing 1 0% -mercaptoethanol ( ME) for five minutes. The proteins

in the gel slice were then electrophoresed under reducing conditions.



Cleava e of cell surface fusion rotein. Radiolabeled , NDV strain B1 infected

cells were washed two times with OptiMem (Gibco/BRL). The cells were then

treated or mock-treated with acetylated trypsin (Sigma) (0.75% in OptiMem) for

ten minutes at 37 . The plates were washed with DMEM containing soybean

trypsin inhibitor (Boehringer Mannheim) (1.5% in OptiMem) and lysed with

Triton X- 100 containing lysis buffer and 3% soybean trypsin inhibitor.

Attachment Assa . At 150 minutes post infection , the infected monolayer was

treated or mock-treated with neuraminidase (Sigma) (0.2 units in 1 mL in

DMEM) and incubated at 370 for an additional 150 minutes. During the pulse-

label and the chase , the cells were treated or mock-treated with

neuraminidase. After the chase , approximately 1 x1 06 uninfected Cas cells

were added to half of the plates at 4



Results

Coimmuno reci itation of HN and F. To investigate a potential interaction

between the HN and F proteins of NDV (strain AV) infected cells

coimmunoprecipitation of the two proteins was explored. At five hours post-

infection , a time at which there is significant synthesis of both proteins (45 , 46),

cells were subjected to a fifteen minute pulse- label and a two hour chase in

non-radioactive media. Proteins present in infected ceillysates were

immunoprecipitated using either a mixture of monoclonal antibodies against

the HN protein or an antibody specific for the cytoplasmic tail of the F protein.

Each of the monoclonal antibodies against the HN protein immunoprecipitated

HN and coimmunoprecipitated F protein , but a mixture was used to ensure that

all populations of HN protein were immunoprecipitated. Concentrations of

SDS ranging from 0. 15 to 0.3% were used during immunoprecipitation , since

the absence of SDS resulted in high levels of nonspecific aggregation and

failure to detect any specific precipitation. Immunoprecipitates were analyzed

by SDS-PAGE under reducing conditions (Fig. 4). At all SDS concentrations

proteins that comigrated with both FO and F proteins could be precipitated with

HN antisera. In addition , a protein that comigrated with HN protein could be

precipitated with F antisera. Very little nonspecific precipitation , particularly at

SDS concentrations of 0.25% and higher, was found. The amount of HN , FO



and F 1 proteins coprecipitated with heterologous antisera decreased with

increasing SDS concentrations. In 0.25% SDS , immunoprecipitation with F

antisera resulted in the coprecipitation of approximately 6% of total HN protein

and immunoprecipitation with HN antisera resulted in the coprecipitation of 2%

and 1 % of total FO and F 1 proteins , respectively. Various lysis and

immunoprecipitation conditions were investigated , without a significant change

in the results.

AV infected cells were also subjected to a five minute pulse and chased

in non-radioactive media for various lengths of time (Fig. 5). Coprecipitation

with heterologous antisera was observed at all time points. Indeed , even after

a five minute pulse , a time at which the F protein should still be localized in the

rough endoplasmic reticulum , extracts precipitated with HN antisera contained

uncleaved Fa protein , while F antisera precipitated HN protein. Because the F

protein is proteolytically cleaved in the trans Golgi (45), this result implies that

the potential HN-F protein interaction occurs in a subcellular compartment prior

to the trans Golgi along the exocytic pathway to the plasma membrane , before

proteolytic processing of the Fa protein.

Chemical crosslinkin of HN and F roteins. To stabilize the potential

association of HN and F proteins on infected cell plasma membranes , use of

the chemical crosslinker DTSSP was investigated. DTSSP is a membrane

impermeable crosslinker (61), therefore incubation of intact cells with this



crosslinker will link only proteins expressed on the cell surface. Furthermore

DTSSP is cleavable with reducing agents , thus individual proteins in a

crosslinked complex can be resolved on polyacrylamide gels after reduction in

-mercaptoethanol ( M E).

After a pulse-chase labeling protocol , monolayers were incubated with

different concentrations of crosslinker ranging from 0.
05 to 1.0 mM. After lysis

proteins in the cytoplasmic extracts were precipitated with either HN antisera
, F

antisera, or no antisera under conditions more stringent then those reported in

Fig. 4 (see Materials and Methods). The precipitates were analyzed by SDS-

PAGE under reducing conditions (Fig. 6A). All concentrations of crosslinker

resulted in the precipitation of a crosslinked complex which contained proteins

that comigrate with HN and F proteins. The amount of HN protein 
precipitated

by F antisera increased with increasing crosslinker concentrations up to

maximal levels at 0. 5 and 1.0 mM DTSSP (Fig. 6B). The ratio of HN:F protein

also increased with increasing crosslinker concentration up to 0.
5 mM DTSSP

(fig. 6B). HN antisera precipitated an F 1 sized molecule at all concentrations of

crosslinker. This protein is likely F 1 protein and not NP since DTSSP is not

membrane permeable and increased amounts of this protein were 
precipitated

with HN antisera in the presence of crosslinker. Furthermore , this material is

in a crosslinked complex and not nonspecific aggregates of NPs
, since no NP

sized molecules were resolved under non-reducing conditions (see below).



From 0. 05 to 0.5 mM DTSSP , F1 protein was precipitated in increasing

amounts, while a decrease was observed at 1.0 mM DTSSP. FO protein was

also precipitated in increasing amounts with HN antisera at cross linker

concentrations ranging from 0. 1 to 0.5 mM , and a decrease was observed at

0 mM DTSSP. Six separate experiments at 0.5 mM DTSSP and at saturating

levels of antisera (not shown) showed that approximately 28% of total labeled

HN protein could be precipitated with F antisera , while 5% of total labeled 

protein and 22% of total labeled F1 protein were precipitated with HN antisera.

Thus, crosslinking appeared to increase the detection of complexes containing

HN and F proteins and resulted in precipitation of heterologous proteins at

levels surpassing those observed by coimmunoprecipitation in the presence of

low SDS concentrations (Fig. 4).

To determine sizes of the crosslinked species , immunoprecipitates

were analyzed by SDS-PAGE under non-reducing conditions (Fig. 7). In the

absence of crosslinker, HN antisera precipitated HN monomer (74 kD), HN

dimer (150 kD) and HN tetramer (-300 kD) (25). As crosslinker concentration

increased , the HN dimer migrated more slowly. Importantly, at all

concentrations of DTSSP , HN antisera precipitated a 66 kD species , a species

with a molecular weight of approximately 150 kD , four high molecular weight

species ranging from approximately 160 to 300 kD and heterogeneous

material with sizes of 120 kD and larger. HN monomer was resolved as two

,,;;
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species , and the levels observed remained unchanged with increasing

crosslinker.

In the absence of crosslinking, F antisera precipitated only a 66 kD

protein , the non-reduced , monomeric form of F protein (Fnr) (68). With

increasing crosslinker concentrations , there was a gradual decrease of the F

monomer. In addition , there was detection of a species with an apparent

molecular weight of approximately 120 kD that comigrated with material

precipitated with HN antisera. The amount of this species increased at 0.5 mM

DTSSP , but decreased when higher crosslinker concentrations were used

presumably because increasing crosslinker concentrations resulted in the

formation of higher molecular weight complexes. Three larger complexes

which migrated between 160 and 300 kD as well as heterogeneous material

120 kD and larger were observed at all concentrations of crosslinker and

comigrated with complexes precipitated with HN antisera. The amounts of

these larger complexes increased as the concentration of DTSSP was

increased to 0. 5 mM and then decreased at 1. 0 mM.

To identify proteins present in each crosslinked species , precipitated

proteins were characterized by two dimensional polyacrylamide gel

electrophoresis. The first dimension separated crosslinked complexes under

non-reducing conditions as described in Fig. 7 (Fig. 8A) and the second

dimension separated these complexes under reducing conditions. Such

analysis of crosslinked complexes immunoprecipitated with HN antisera (Fig.



8B) showed that material present in the stacker gel as well as intermediate

sized complexes with molecular weights of 160-
300 kD contained F 0 and F 

proteins as well as HN protein. The species which comigrated with both the

HN dimer as well as the monomer contained primarily HN protein. The

species which migrated near 120 kD resolved primarily into F 1 protein with

minimal amounts of HN protein and FO protein present. 
The distribution of HN

protein (Table1) among these species was 15% in the stacker gel
, 32% from

160-300 kD, 42% at 150 kD and 11% at 74 kD. Thus, FO and F1 proteins were

associated with both intermediate sized as well as large
, crosslinked

complexes containing HN protein. Surprisingly, a 66 kD species containing

primarily FO and F1 proteins was precipitated with HN antisera.

A similar analysis of crosslinked complexes immunoprecipitated with F

antisera (Fig. 8C) showed that material in the stacker gel as well as the

complexes ranging in size from 140 to 300 kD contained HN
, FO and F1

proteins. The 120 kD species as well as the 66 kD species contained almost

exclusively FO and F1 proteins. The distribution of total 
FO and F1 was 5% and

6% in the stacker gel , 23% and 21% in the 160-300 kD region , 5% and 22% at

120 kD , and 67% and 51% at 66 kD. Thus, HN and F precipitated by

heterologous antisera were associated with complexes 160 kD and larger. A

small amount of uncrosslinked HN protein was also coprecipitated with F

protein after crosslinking.



Crosslinkin at various times of infection. To explore the appearance of

crosslinked complexes with time of infection , infected cells were incubated with

DTSSP at various time points post- infection (PI) (Fig. 9). As early as 4.25 hours

, 10% of the total HN and F proteins and 5% of the total Fa protein could be

precipitated with heterologous antisera. For the HN and Fa proteins , these

percentages increased with time post- infection until 5.75 hours and then

dropped , while for the F protein , the percentage increased until 5.25 hours

before decreasing. These results support the idea that complexes observed

later in infection (7.5 hours , Fig. 5-8) cannot be due exclusively to close packing

of the molecules which might accompany high levels of expression of viral

proteins at the cell surface.

The Effect of F Cleava e on the Detection of HN and F Crosslinked S ecies.

While FO protein was detected in crosslinked complexes obtained with HN

antisera , the predominant species detected was F1 protein. Furthermore , it

has been reported that in measles virus infected cells only the F 1 protein and

not the FO protein can be precipitated in a crosslinked complex with HA (39).

To determine the importance of cleavage of the FO protein in the detection of

HN-F protein complexes, the avirulent B1 strain of NDV was utilized. When Cas

cells are infected with NDV- , the FO protein generated by the virus is not

cleaved into F 1 and F2 proteins due to the absence of a furin recognition site in

: '



the F protein sequence (4 , 19 , 54 , 66). Cleavage does occur, however , upon

addition of exogenous trypsin (reviewed in (14)).

Cas cells , infected with NDV strain B1 or AV were labeled and

crosslinked as described above , except that the monolayers were mock treated

or incubated with exogenous trypsin before crosslinking. F antisera

precipitated HN protein equally from B1 infected ceillysates derived from either

trypsin treated (+trypsin) or untreated cells (-trypsin) (Fig. 10). H N antisera

precipitated the F protein whether or not it was cleaved. These results indicate

that cleavage of the FO protein is not required for the formation of a crosslinked

complex with HN. In contrast to AV infected cells , however, total HN protein

precipitated by F antisera as well as total F protein precipitated with HN

antisera was considerably reduced.

Crosslinked , precipitated proteins were characterized by two

dimensional SDS-PAGE as described in Fig. 8. In the first dimension , in the

absence of trypsin treatment under non-reducing conditions , proteins

precipitated with HN antisera (Fig. 11A, HN antisera +DTSSP; Table 1) yielded

HN monomer (74 kD), a small amount of 160-300 kD species and a large

amount of protein in the stacker gel , as well as heterogeneous material with

sizes greater than 160 kD. Analysis of these complexes in the second

dimension under reducing conditions (Fig. 11 B) showed that the material in the

stacker gel and at 74 kD contained most of the HN protein (see Table 1), a

result very different than that observed in A V infected cells. Electrophoresis of



precipitates obtained with F antisera in the first dimension (Fig. 11A , F antisera

+DTSSP) resulted in Fnr (66 kD), a 120 kD species , 160-300 kD species , a

large amount of protein in the stacker gel , as well as heterogeneous material

throughout the gel. Electrophoresis in the second dimension under reducing

conditions (Fig. 11 C) showed that like the HN antisera results , most of the

crosslinked F protein was observed migrating in the stacker gel.

After trypsin treatment, analysis of precipitates obtained with both HN

and F antisera in the first dimension (Figure 12A , HN antisera +DTSSP , F

antisera +DTSSP; showed an increase in heterogeneous crosslinked

complexes which electrophoresed with molecular weights between 160 and

300 kD , similar to that observed in AV infected cells. Crosslinked material

precipitated with F antisera, however, contained a higher percentage of F

protein in the stacker region and from 160-300 kD than was observed in A 

infected cells. Thus , in the absence of trypsin digestion , the majority of

crosslinked material precipitated was very large. Trypsin treatment resulted in

an increase of crosslinked species between 160-300 kD , similar in size to the

crosslinked material observed from AV infected cells. Therefore , while

cleavage of the F protein did not increase the amount of crosslinked complex

the size of the complex changed upon cleavage.

The effect of attachment on the HN and F interaction. HN protein binds to

uninfected cells via sialic acid residues on its receptor, and when the sialic

acid residues are cleaved with neuraminidase , the HN protein can no longer



bind. To determine the effect of HN protein binding on crosslinking of HN and F

proteins , crosslinking was accomplished under conditions which minimize

attachment as well as conditions which maximize attachment. To minimize

attachment , infected cells were incubated in neuraminidase (N), a treatment

which has been shown to block attachment and subsequent fusion (47). To

maximize attachment, an overlay of uninfected cells was added. Infected cells

treated with neuraminidase were also incubated with an overlay of uninfected

cells.

Four monolayers of cells were infected with NDV , strain AV. One

monolayer (+N+OL) was incubated with neuraminidase , pulse- labeled and an

uninfected cell overlay was added. Another monolayer (+N-OL) was incubated

with neuraminidase , pulse- labeled and no overlay was added. A third

monolayer (-N+OL) was mock-treated with neuraminidase , pulse labeled and

an uninfected cell overlay was added. The last monolayer (- OL) was mock-

treated with neuraminidase , pulse- labeled and no overlay was added. The cell

surface proteins of all four plates were then subjected to crosslin king as

described in Materials and Methods. Proteins precipitated with HN as well as F

antisera are shown in Fig. 13. Incubating infected cells in neuraminidase (+N)

resulted in HN , FO and F1 proteins migrating with a faster mobility due to the

cleavage of sialic acid residues from the proteins. The amount of HN protein

precipitated with F antisera was averaged from three separate experiments.

Approximately 33% (+/- 16%) of total precipitated HN protein under conditions



which minimize attachment (+N-OL), while conditions which maximize

attachment (-N+OL) resulted in the precipitation of 30% (+/-
8%) of total

precipitable HN protein. Precipitation of FO and F1 proteins with HN antisera

yielded 4% (+/-2%) and 27% (+/-17%) of total F proteins, respectively, under

attachment minimizing conditions (+N-OL), while 3% (+/- 5%) and 18% (+/-

7%) were precipitated under attachment maximizing conditions (-
N+OL).

This result is consistent with the formation of a 
crosslinked species before

attachment. Furthermore, binding of the HN protein to sialic acid residues of

uninfected cells resulted in a slight decrease in the ability of the F 
1 protein to be

crosslinked.



Discussion

One interpretation of the finding that syncytia formation requires both an

HN and an F protein derived from the same paramyxovirus is that there is a

physical interaction between the two proteins. We have been able to precipitate

a potential complex of mature HN and F proteins in infected cells using

monospecific antisera against either protein , although the amount of

coprecipitation detected was very small. Approximately 5% of the total HN

protein was precipitable with F antisera and 2-3% and 1-4% of FO and F1

proteins , respectively, were precipitable with HN antisera. These amounts

could not be increased using various cell lysis and immunoprecipitation

conditions (unpublished observations). Furthermore , coprecipitation was

detected as early as after a five minute radioactive pulse- label. While these

results may indicate that only a small percentage of the two proteins actually

physically interact, it remained possible that conditions required for cell lysis

and/or immunoprecipitation could destabilize any complexes containing HN

and F proteins. To stabilize these potential complexes at the cell surface , we

utilized the membrane impermeable , protein crosslinker DTSSP. Crosslinking

resulted in an increased detection of complexes containing HN and F proteins.

At a chase time when maximal levels of proteins are at the cell surface and at

optimal crosslinker concentrations , approximately 28% of the total HN protein



and 22% of the total F 1 protein could be precipitated with heterologous

antisera. These percentages were not increased with higher crosslinker

concentrations. Such increased levels of coprecipitation of HN and F proteins

after crosslinking are consistent with the idea that HN-F protein complexes may

not be very stable after cell lysis and immunoprecipitation.

It has been reported that measles HA and F proteins can be crosslinked

on the surfaces of cells expressing these two proteins from vaccinia vectors

(38), although another study of surface crosslinking of SV5 infected cells as

well as NDV infected cells reported no crosslinking of HN and F proteins (53).

Russell et ai, however, used several conditions that differed significantly from

ours and may account for our contrasting results. For example , Russell et al

crosslinked infected cells in suspension after removing them from a

monolayer, while we crosslinked infected cell monolayers. Detachment of

cells from surfaces may result in the rearrangement of surface proteins.

Another study by Markwell and Fox (39) found no evidence of crosslinking of HN

and F proteins in both Sendai virus and Newcastle disease virus virions. This

report may differ from ours both because virions were used instead of infected

cells , and different crosslinkers were utilized.

Interestingly, HN antisera precipitated only 5% of total FO protein after

crosslinking, an amount not very different from that observed by

coimmunoprecipitation. It is possible that only a minor population of FO



proteins are in a complex with HN proteins, and that all of these molecules can

be precipitated with antisera against HN. Alternatively, DTSSP may not

efficiently crosslink FO to HN. Malvoisin and Wild (38) reported chemical

crosslinking of HA and F 1 proteins of measles virus at the cell surface , but

were unable to detect any F 0 protein in the crosslinked complexes. They

argued that only the cleaved form of the protein can interact with the HA protein.

Using the same lysis conditions reported by Malvoisin and Wild , we were

unable to precipitate any crosslinked material containing FO protein

(unpublished observations). Thus , different lysis conditions may be

responsible for these different results.

We explored the requirement for F protein cleavage in the formation of

crosslinked complexes using NDV strain B1 , which has an uncleaved 

protein. The amount of crosslin king between the fusion protein of this virus

and the HN protein did not change , independent of whether the F protein was

uncleaved or cleaved by the addition of exogenous trypsin. This result argues

that cleavage per se is not required for the formation of the complex. However

for unknown reasons , the amount of crosslinking of HN and F proteins after

infection with this strain of virus is considerably less than the amount observed

with strain AV.

Results with strain B1 showed that there was no difference in

crosslinking upon cleavage of the F protein. However, the sizes of the



crosslinked complexes were significantly different upon cleavage. 
The HN-

protein complexes were resolved primarily in the stacker region of the gel

before cleavage, while after cleavage, the majority of the HN-
F 1 protein

complexes were in the 160-300 kD size range. It has been previously shown

that cleavage alters the conformation of the fusion protein (23). Perhaps

cleavage results in less close packing of the HN and F molecules and

therefore, smaller crosslinked complexes.

It has been proposed that attachment of HN protein to its receptor

stimulates the interaction of HN and F proteins (30). However
, attempts to

increase the participation of HN proteins in attachment by adding an uninfected

Cas cell overlay did not alter HN-F protein crosslinking. Incubating infected

cells in neuraminidase , which should block attachment , also failed to

significantly alter the amount of HN and Fa in crosslinked complexes, although

the amount of F crosslinked was slightly increased under these conditions.

In an attempt to characterize crosslinked species derived from individual

proteins, we transfected cells with the HN gene alone or the F gene alone

using an SV40 based vector. We were not able to crosslink 
HN proteins , but

were able to crosslink F proteins , indicating that F-F crosslinking is possible.

These crosslinked complexes electrophoresed with sizes of 200-
300 kD

(unpublished observations). Characterization of the crosslinked complexes

formed between strain AV HN and F proteins showed that while some

complexes were very large and resolved in the stacker gel
, most were in three
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to four relatively discrete species ranging in size from 160 to 300 kD. If there is

no crosslinking of the HN protein except for the naturally occurring

intermolecular disulfide bonding, then the smaller (160-300 kD) complexes

precipitated with HN antisera should have 1-4 HN proteins and 1-4 F proteins

which may be a mixture of both HN-F proteins as well as F-F protein

complexes.

In contrast to the results obtained from infected cells , DTSSP

crosslinking of transfected cells coexpressing HN and F proteins did not result

in the detection of any HN-F protein complexes (unpublished observations).

Given the failure to detect HN-F protein complexes in transfected cells , it

seemed possible that their detection in infected cells could be due to close

packing of molecules as a result of high levels of viral glycoprotein expression

in infected cells at 7.25 hours post infection. However, these crosslinked

complexes were readily detected as early as 4.25 hours post infection , when

reduced (42). Thus , the surfaces of infected cells may differ from transfected

the concentrations of viral proteins at the cell surface should be considerably

cells. In this regard , it is interesting that the only reports of crosslinking of HN

and F proteins in cells expressing these proteins from a vector were

accomplished in the context of vaccinia virus infection (38 , 74).

After crosslinking, HN antisera precipitated a 120 kD complex which

when reduced , contained primarily F1 protein. In addition , the precipitates

contained a 66 kD polypeptide which comigrated with the non-reduced form of



the fusion protein. This result suggests that after crosslinking, F protein which

is not crosslinked to HN protein can be precipitated with HN antisera. The

most likely explanation for this observation is that crosslinking stabilizes a

complex containing HN and F proteins which is able to interact noncovalently

with F molecules which are then coprecipitated with the crosslinked complex.

Indeed , it has been reported that the fusion protein of paramyxoviruses forms

SDS resistant oligomeric structures (64). Such structures would be resistant to

the precipitation conditions utilized here.

The current model for an HN-F protein interaction in paramyxoviruses

which require both glycoproteins for fusion promotion is that F protein is

synthesized as a metastable pre-fusion form that is activated by a

conformational change in HN protein caused by binding to its receptor (30 , 31

56). Whether this HN-F protein interaction occurs before or after HN protein

attachment is not predicted in this model. Our results suggest that HN and F

proteins interact prior to HN protein attachment in a subcellular compartment

preceding the trans Golgi in the trafficking pathway to the plasma membrane.

Indeed , work by Tanaka et al. (63) suggests that human parainfluenza virus

type 3 HN and F proteins interact in the endoplasmic reticulum. This idea is

consistent with our results as an interaction was detected during a five minute

pulse-label , prior to proteolytic cleavage of Fa. By analogy with influenza HA 

and HA2 and the data presented here , perhaps HN and F proteins interact in

the RER and hold each other in a pre-fusion conformation. Upon attachment of



the HN protein to its receptor, HN protein undergoes a conformational change

which causes a conformational change in the associated F protein. The

conformational change in F protein thus allows the release of the hydrophobic

fusion peptide into the target membrane and permits fusion to take place.



TABLE 1. Distribution of HN and F after crosslinking as determined by two
dimensional SDS-PAGE

Distribution (%)a

Protein

Trypsin Trypsin

Stacker
160-300 kDa
150 kDa
74 kDa

Stacker
160-300 kDa
120 kDa
66 kDa

Stacker
160-300 kDa
120 kDa
66 kDa

a Determined from densitometer scans of Fig. 7 , 11 , and 12. HN values were

obtained from proteins precipitated with HN antisera (Fig. 7B , 11B , and 12B),

while Fa and F values were obtained from proteins precipitated with F
antiserum (Fig. 7C , 11C, and 12C). ND , no data.
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Legend to Figure 4: Coimmunoprecipitation of HN and F from A V infected cells.
At 5 hours post-infection , AV infected Cas cells were pulse-labeled with 35S
methionine-cysteine for 15 minutes and then chased in non-radioactive media
for two hours. The cells were lysed in Chaps buffer as described in Materials
and Methods. Proteins present in extracts from 2x105 cells were precipitated
with a mixture of monoclonal antibodies a- , a- , a-3a and a-4a (HN antisera
lanes), polyclonal antisera against the cytoplasmic tail of F (F antisera lanes),
or no antisera (-antisera lanes), in the presence of 0. 15% , 0. , 0. 25% or 0.
SDS. The precipitated proteins were analyzed by SDS-PAGE in the presence of
reducing agent. HN , hemagglutinin-neuraminidase protein; FO' uncleaved
fusion protein; F 1, cleaved fusion protein; M , virus infected cell extract not
immunoprecipitated.
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Legend to Figure 5: Coimmunoprecipitation of HN and F after a five minute
pulse-label. At 5 hours post- infection , AV infected Cas cells were washed and
incubated in media lacking methionine for 20 minutes. Cells were pulse-

labeled with S methionine-cysteine for 5 minutes and then chased in non-
radioactive media containing cycloheximide and excess methionine for 0 min
(lanes 1 , 5, 9, 13), 5 min (lanes 2 14), 15 min (lanes 3 15) or 30

min (lanes 4 , 8, 12 , 16) as described in Materials and Methods. The cells

were lysed in Triton buffer and precipitated with polyclonal antisera against

amino acids 117-515 and 117-268 of the HN protein (lanes 1-4), polyclonal

antisera against the cytoplasmic tail of F protein (lanes 5-8), a mixture of

conformation-specific monoclonal antibodies against HN protein (lanes 9- 12),

or no antisera (lanes 13-16) in the presence of 0.25% SDS. The precipitated

proteins were analyzed by SDS-PAGE in the presence of reducing agent. The
lower band in lanes 9- 12 is non-specific. In M lane , NP and P proteins

comigrate with the F protein. C , chase time (min); poly, polyclonal antiserum;
mono, mixture of monoclonal antisera; HN , hemagglutinin-neuraminidase

protein; FO' uncleaved fusion protein; F 1, cleaved fusion protein; M , virus

infected cell extract not immunoprecipitated.
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Legend to Figure 6: Titration of the chemical crosslinker DTSSP. AV infected
cells were pulse labeled as in Fig. 4. After the two hour chase in DMEM
surface proteins were crosslinked in the presence of 0 , 0. , 0. , 0. , 0. 5 or

0 mM DTSSP and lysed in Triton X-100 buffer as described in Materials and
Methods. Proteins from the cytoplasmic extracts were precipitated with HN
antisera (a mixture of monoclonal antibodies a- , a- , a-3a and a-4a), F
antisera at subsaturating levels or no antisera in the presence of 0.4% SDS
and analyzed by SDS-PAGE under reducing conditions (Panel A). Panel B:
Panel A was scanned on a Molecular Dynamics densitometer and the
densitometer units of HN , FO and F 1 precipitated with heterologous antisera
were plotted against increasing concentrations of DTSSP. HN , hemagglutinin-
neuraminidase protein; FO' uncleaved fusion protein , F1' cleaved fusion

protein; extreme left lane, virus infected cell extract not immunoprecipitated.
Panel C: Panel A was scanned on a Molecular Dynamics densitometer and
the densitometer units of HN , FO and F1 precipitated with F antisera were listed

as a ratio of HN:F.
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Legend to Figure 7: Non-reduced crosslinked proteins observed in the
presence of increasing concentrations of DTSSP. AV infected cells were
radiolabeled , crosslinked , and lysed as in Fig. 5. Proteins from the cytoplasmic
extracts were precipitated with HN antisera (a mixture of monoclonal antibodies

1c, a- , a-3a and a-4a) , F antisera , or no antisera in the presence of 0.4%
SDS. The precipitates were analyzed by SDS-PAGE under non-reducing
conditions. Molecular weights were assigned using NDV, strain AV , infected
cell extracts as markers; extreme left lane , virus infected cell extract not
immunoprecipitated.



DTSSP +DTSSP

HN F - HN F antisera

"- " .- *,.;

stacker gel

160-300 kD

1 sa kD

120 kD

74 kD

66kD

stacker 160-300 kD 15a kD 74 kD

v V 

-- , . .

stacker 66 kD160-30a kD 120 kD

. .

Legend to Figure-8: Two dimensional 8DS-PAGE analysis of crosslinked
proteins from AV infected cells. AV infected cells were radiolabeled
crosslinked with 0.5 mM DTSSP , and lysed as in Fig. 5. Proteins from the
cytoplasmic extracts were precipitated with HN antisera (a mixture of
monoclonal antibodies a- , a- , a-3a and a-4a) , F antisera , or no antisera in
the presence of 0.4% SDS. Panel A: Precipitated proteins which were not
crosslinked (-DTSSP) or were incubated in the presence of crosslinker
(+DTSSP) were analyzed by SDS-PAGE under non-reducing conditions as
described in Fig. 6 except the complexes were resolved on a lower percentage
polyacrylamide gel. Panel B: A lane identical to the HN antisera +DTSSP lane
was excised from the gel , reduced in bME and analyzed by SDS-PAGE under
reducing conditions. The top portion of the gel in Panel A is observed on the
left side of panel B. Panel C: A lane identical to the F antisera +DTSSP lane
was excised from the gel , reduced in bME and analyzed by SDS-PAGE under
reducing conditions. v , complexes containing HN and F proteins; HN
hemagglutinin-neuraminidase protein; FO' uncleaved fusion protein; F1'
cleaved fusion protein; extreme left lane , virus infected cell extract not
immunoprecipitated.
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Legend to Figure 9: Crosslinking of proteins from AV infected cells at various
times post-infection. At various times post- infection , AV infected Cas cells were
pulse- labeled with S methionine-cysteine for 15 minutes and then chased in
non-radioactive media for two hours. Crosslinking with 0. 5 mM DTSSP was
performed at 4.25 (lanes 4 , 12), 75 (lanes 3 , 11), 25 (lanes 2 , 10)
and 5. 75 (lanes 1 , 5 , 9) hours post- infection. Cells were then lysed and as for
Fig. 5. Proteins from the cytoplasmic extracts were precipitated with HN
antisera (a mixture of monoclonal antibodies a- , a- , a-3a and a-4a) or F
antisera in the presence of OA% SDS and the precipitates were analyzed by
SDS-PAGE under reducing conditions (Panel A). Panel B: Three separate
experiments were scanned on a Molecular Dynamics densitometer and
densitometer units of HN protein precipitated with F antisera and F proteins
precipitated with HN antisera were plotted against time PI. HN , hemagglutinin-
neuraminidase protein; FO' uncleaved fusion protein; F1' cleaved fusion

protein; M , virus infected cell extract not immunoprecipitated.
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Legend to Figure 10: Cleavage of 81 fusion protein aUhe cell surface. At five

hours post-infection , AV or B1 infected Cas cells were pulse-labeled with 35S

methionine-cysteine for 15 minutes and then chased in non-radioactive media
for two hours. The cells were treated or mock-treated with trypsin for 10
minutes , washed with soybean trypsin inhibitor , crosslinked with 0.5 mM

DTSSP and lysed in Triton X-100 buffer containing soybean trypsin inhibitor as
described in Fig. 5. Proteins from the cytoplasmic extracts were precipitated
with HN antisera (a mixture of monoclonal antibodies a- , a- , a-3a and a-

4a), F antisera, or no antisera in the presence of 0.4% SDS. Precipitates were
analyzed by SDS-PAGE under reducing conditions. AV , AV infected cell

precipitates; B1 , B1 infected cell precipitates; -trypsin , mock-treated with trypsin;

+trypsin , incubated with trypsin; HN hemagglutinin-neuraminidase protein; FO'

uncleaved fusion protein; F 1, cleaved fusion protein; leftmost lane , virus

infected cell extract not immunoprecipitated.
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Legend to Figure 11: Two dimensional SDS-PAGE analysis of crosslinked
proteins from B1 infected cells expressing an uncleaved F protein. B1 infected
cells were radiolabeled , crosslinked with 0. 5 mM DTSSP, and lysed as in Fig.

10 (in the absence of trypsin treatment). Proteins from the cytoplasmic extracts
were precipitated with HN antisera (a mixture of monoclonal antibodies a- 1 c , a-

, a-3a and a-4a), F antisera , or no antisera in the presence of 0.4% SDS.
Panel A: Precipitated proteins which were not crosslinked (-DTSSP) or were
crosslinked (+DTSSP) were analyzed by SDS-PAGE under non-reducing
conditions. Panel B: A lane identical to the HN antisera +DTSSP lane was
excised from the gel , reduced in bME , and analyzed by SDS-PAGE under
reducing conditions. The top portion of the gel in Panel A is observed on the
left side of panel B. Panel C: A lane identical to the F antisera +DTSSP lane
was excised from the gel , reduced in bME and analyzed by SDS-PAGE under
reducing conditions. HN , hemagglutinin-neuraminidase protein; FO' uncleaved

fusion protein; F 1, cleaved fusion protein; extreme left lane , virus infected cell
extract not immunoprecipitated.
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Legend to Figure 12: Two dimensional SDS-PAGE analysis of-, crosslinked
proteins from B1 infected cells expressing a cleaved F protein. Bt infected
cells were radiolabeled , incubated with trypsin , crosslinked with 0.5 mM
DTSSP , and lysed as in Fig. 10. Proteins from the cytoplasmic extracts were
precipitated with HN antisera (a mixture of monoclonal antibodies a- 1 c , a- , a-
3a and a-4a) , F antisera , or no antisera in the presence of 0.4% SDS. Panel A:
Precipitated proteins which were not crosslinked (-DTSSP) or were incubated
in the presence of crosslinker (+DTSSP) were analyzed by SDS-PAGE under
non-reducing conditions. Panel B: A lane identical to the HN antisera +DTSSP
lane was excised from the gel , reduced in bME , and analyzed by SDS-PAGE
under reducing conditions. The top portion of the gel in Panel A is observed on
the left side of panel B. Panel C: A lane identical to the F antisera +DTSSP
lane was excised from the gel , reduced in bME and analyzed by SDS-PAGE
under reducing conditions. HN , hemagglutinin-neuraminidase protein; FO'
uncleaved fusion protein; F 1, cleaved fusion protein; extreme left lane , virus
infected cell extract not immunoprecipitated.
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Legend to Figure 13: The effect of attachment on HN and F crosslinking. Four
cell monolayers were infected with AV. At 2. 5 hours post-infection , two plates
were treated and two plates were mock-treated with neuraminidase (0.

units/mL) and incubated at 370 for an additional 2.5 hours. Cells were

radiolabeled with 35S methionine-cysteine for 15 minutes in the presence or
absence of neuraminidase, and incubated in DMEM for 2 hours in the
presence or absence of neuraminidase. After the chase , an overlay of
uninfected cells was added to one plate in the presence and one plate in the
absence of neuraminidase. The other two plates did not receive an overlay.
The surface proteins were immediately crosslinked in 0. 5 mM DTSSP , and the
cells were lysed as in Fig. 5. Proteins from the cytoplasmic extracts were
precipitated with HN antisera (a mixture of monoclonal antibodies a- 1 c , a- , a-
3a and a-4a), F antisera , or no antisera in the presence of 0.4% SDS. The
precipitates were analyzed by SDS-PAGE under reducing conditions. Panel A:
Autoradiograph. Panel B: Coimmunoprecipitation of HN , Fo, and F with
heterologous antisera expressed as a percentage of the total protein
immunoprecipitated with homologous antisera (taken from three separate
experiments). - , cells mock-treated with neuraminidase; +N , cells treated
with neuraminidase; - , no uninfected cell overlay added; +OL , uninfected cell
overlay added; HN , hemagglutinin-neuraminidase protein; FO' uncleaved F

protein; F 1, cleaved F protein; extreme left lane , virus infected cell extract not

immunoprecipitated.



CHAPTER 3

MUTATIONAL ANALYSIS OF HEPTAD REPEATS IN THE MEMBRANE-

PROXIMAL REGION OF NEWCASTLE DISEASE VIRUS HN PROTEIN

This chapter was published in Journal of Virology in May, 1999 essentially as

presented here , accounting for some duplication in background and

discussion presented in Chapter 1 and Chapter 4.

Introduction

Newcastle disease virus (NDV) is one of many paramyxoviruses that

requires two surface glycoproteins in order fuse with uninfected cells. 

paramyxovirus mediated fusion , the fusion (F) protein is thought to directly

mediate the fusion event, and , with the exception of simian virus 5 (SV5) , the

viral attachment protein is also necessary (30). Thus the hemagglutinin-

neuraminidase (HN) protein , which serves as the attachment protein for NDV

has three functions; attachment, neuraminidase , and an undefined role in

fusion termed fusion promotion.



The requirement for the HN protein in fusion is virus specific and recent

work from several laboratories suggests that the presumed stalk domain of

various HN proteins confers this specificity. Deng et al. constructed chimeric

HN proteins containing regions from human parainfluenza virus 3 (hPIV3) and

NDV (17). Their results suggest that both the presumed transmembrane

domain as well as a portion of the presumed stalk region of the HN protein

confer F protein specificity for fusion. In a similar approach using parainfluenza

virus 2 (PIV2) and simian virus 41 (SV41) chimeras , Tsurudome et al. also

found that the presumed stalk region of the HN protein defines F protein

specificity (67). Additionally, they reported that the globular head was

necessary for maximal fusion promotion. However, they found that PIV2 and

SV41 chimeras did not require a transmembrane sequence specific to either

PIV2 or SV41 for fusion promotion. Tanabayashi et al also created chimeric HN

proteins combining Sendai virus (SeV) and hPIV3 and found that only the stalk

region of the HN protein was important for fusion specificity (62). Thus , while

there is disagreement about the role of the transmembrane region and the

globular head domain in virus specificity, it is clear that the stalk regions of HN

proteins from various paramyxoviruses are crucial for F protein specificity. We

have previously expressed HN proteins containing mutations in the stalk

domain (56). These mutant proteins separated fusion promotion activity from

attachment activity and led us to conclude that the stalk region of the NDV HN

protein is critical for fusion promotion.



Virus specificity of the HN protein argues for an interaction between the

HN and F proteins required for fusion (24), and , as described above , studies of

chimeric HN proteins as well as point mutations suggest that it is the stalk

domain that interacts with the F protein. While no clear studies of F protein

chimeras have shown which domains of the F protein are important for an

interaction with the HN protein , mutational analysis of the F protein has shown

that several domains are important in fusion , including the fusion peptide as

well as the heptad repeat regions HR1 and HR2 (7 , 26 , 30 , 52 , 58).

Heptad repeat regions are often involved in protein-protein interactions.

Given the importance of heptad repeat domains in the F protein , the

transmembrane-proximal location of one of them , as well as the apparent role

of the transmembrane-proximal presumed stalk region of the HN protein in

fusion promotion , we explored the potential for the presence of heptad repeats

in this region of the HN protein. We found heptad repeat domains in all

paramyxovirus and rubulavirus attachment proteins. Furthermore , use of

secondary structure prediction softare revealed that the heptad repeats from

all the viruses analyzed showed a high probability of forming alpha helices.

We explored the importance of individual amino acids within these

potential helices by mutation. The hydrophobic " " position amino acids were

the first residues chosen for mutagenesis because the " " positions of heptad

repeats are often important for mediating protein-protein interactions. Thus , we

hypothesized that such mutations would have the potential to cause a more



deleterious effect on fusion promotion than mutations in other positions of the

helices. Indeed , we found that all proteins altered in the " " positions

negatively effected fusion. However, mutations in other positions of the helix

also negatively effected fusion. All mutant proteins had wild-type levels of

hemagglutination and variable neuraminidase activity. These results argue

that a specific amino acid sequence within the stalk is important for the fusion

promotion activity of the HN protein , a result that would be expected if the region

is involved in a specific interaction with the F protein.



Materials and Methods

Cells. Cos-7 cells , obtained from the American Type Culture Collection , were

maintained in Dulbecco s modified Eagle medium (DMEM) supplemented with

nonessential amino acids , vitamins , glutamine , penicillin/streptomycin , and

10% fetal calf serum.

Antibodies. Anti-NDV was raised against UV- inactivated NDV (strain AV) virions

(56). Monoclonal antibodies specific for NDV HN protein were a generous gift

of Dr. Ron Iorio. Antibodies used were anti- , anti- , anti- , anti- 1,4c , and

anti- 3c (25).

Site-directed muta enesis. Positive-sense oligonucleotides were synthesized

by DNA International , Operon or Life Technologies. The oligonucleotides used

for mutagenesis (written 5' to 3' ) were L 7 4A

(GGAAGA TTACA TCTGCAGCCGGCTCCAATCAGGATGTAG),

V81A (GGTTCCAATCAGGATGTCGCGGATAGGATATACAAGC),
. :1

V88A (GGA TATACAAGCAGGCAGCTCTTGAA TCTCCG),

L96A (GGCAGCGCTAACACCG),

1103A (GAA TCTA TAGCAA TGAA TGC),

L 110A (CAATAACATCCGCCTCTTATC),

L74M (GGAAGATTACATCTGCAATGGGTTCCAATCAGGA TGTAG),

L96M (CTTGAA TCTCCGTTGGC TGCTAACACCGAA TCTA TA),
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L90A (GGA TATACAAGCAGGTGGCCGCGGAATCTCCGTTGGC),

L97 A (GAATCTCCGTTGGCA TTGGCCAACACCGAA TCTA TAA TT,

1102A (CTAACACCGAATCCGCGATTATGAATGCAATAACATCC). Bases which

were altered are underlined. Double mutants were made by sequential

mutagenesis. Oligonucleotide-directed mutagenesis of pSVL (Pharmacia)

containing the HN gene (42) was accomplished using the Morph Site-Specific

Plasmid DNA Mutagenesis Kit from 5 Prime 3 Prime , Inc. or the Chameleon

Double-Stranded , Site-Directed Mutagenesis Kit from Stratagene using the

methods and reagents supplied with each kit. Mutant pSVL-HN cDNAs were

identified by sequencing or by the introduction of a novel restriction site into the

mutant gene. Each HN mutant gene was then fully sequenced to ensure that

no extraneous mutations were generated in other parts of the gene.

Transient ene ex ression. Two methods were used to express HN cDNAs in

Cos-7 cells. DEAE-dextran transfection was performed by a modification of

Levesque et al as described previously (35 , 52). Lipofectin (Gibco)

transfections were done essentially as suggested by the manufacturer and

were described previously (36) except cells were incubated with the Lipofectin-

OptiMem-DNA mixture at 37 for 20-24 h.

Radiolabelin sis and immuno reci itation of rotein. At 48 h post-

transfection , cells were radiolabeled for 2 h at 37 in DMEM containing 70% of

the cysteine of standard media and lacking methionine. The labeling media

contained 11 mCi/mL 35S- thionine and 35S-cysteine (EXPRE35S35S , New
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England Nuclear). The cells were chased in non-radioactive media for 2 h (4 h

for cell surface assays).

At the end of the chase period , cells were washed once in phosphate

buffered saline (PBS) and lysed in RSB buffer (0.01 M Tris-HCI , pH7.4 , 0. 01 M

NaCI) containing 0. 5% sodium deoxycholate , 2. 5 mg/mL N-ethylmaleimide , 2

mg/mL iodoacetamide and 1 % Triton. Lysates were homogenized by passage

through a 21-gauge needle four times. After lysis , the nuclei were removed by

centrifugation.

Cell Iysates were incubated with antisera for one hour at room

temperature. Fixed , killed staphylococcus aureus (SA) cells (Boehringer

Mannheim) resuspended in PBS , 0. 5% polyoxyethylenesorbitan monolaurate

and 1 mg/mL bovine serum albumin were added to the lysate in the presence

of 0.4% sodium dodecyl sulfate (SDS) and incubated at room temperature with

agitation for thirty minutes. The SA cells were pelleted and the supernatants

were removed. The pellets were washed three times with PBS , 1 % Triton X-

100 , 0. 5% sodium deoxycholate and 0. 1 % SDS. The SA cells were then

resuspended in sample buffer and stored at - unti analysis by SDS-

polyacrylamide gel electrophoresis (PAGE). Samples were incubated at 100

for 5 min prior to loading on 8% SDS-PAGE gels.

Fusion Assa . After a 48 h incubation in DMEM , twenty of the largest fusion

areas were counted for each mutant and averaged as described previously



(56). Values obtained for fusion activities were taken from three separate

experiments and averaged.

Cell Surface Assa . Transfected cells were radiolabeled as above and chased

for four hours in non-radioactive media. Analysis of protein at the cell surface

was done as described previously (56). Briefly, after a four hour chase

transfected monolayers were incubated on ice in 500 ul phosphate buffered

saline , 20 ul complement inactivated antiserum (against UV inactivated NDV

virions), and 1 u110% sodium azide , for 30 min with agitation. Unbound

antiserum was removed from the monolayer, the cells were lysed and proteins

expressed at the plasma membrane were immunoprecipitated. Proteins at the

cell surface were quantitated from autoradiographs by densitometry and values

obtained were taken from at leastthree separate experiments and averaged.

Attachment Assa . At 48 h post-transfection , attachment was assayed as

described previously (44).

Neuraminidase Assa . At 48 h post-transfection , neuraminidase was assayed

as described previously (44). Values obtained for neuraminidase activities

were taken from three separate experiments and averaged.



Results

Mutagenesis of HN protein stalk domain. The stalk region of the NDV HN

protein has been defined as amino acids 49-146 (15 34). Visual inspection of

this sequence showed that it contains two heptad repeats of hydrophobic

amino acids (leucine , valine , isoleucine) separated by a space of 7 amino

acids (Fig. 14). The heptad repeat motif is found in many proteins and is

thought to impart an alpha helical secondary structure (37). Secondary

structure prediction softare (Baylor College of Medicine) predicts that the

heptad repeats in the stalk region of the HN protein do indeed have the

potential to form two alpha-helices with an intervening region of 7 amino acids

(Fig. 15).

The stalk region of other paramyxovirus HN proteins were similarly

analyzed for secondary structure. The attachment proteins of the

paramyxoviruses and rubulaviruses SV41 , mumps virus (MuV), SV5 , hPIV3

SeV and avian parainfluenza 4 (avian para 4) also contain heptad repeats of

hydrophobic amino acids with the potential to form alpha-helices , although

morbilliviruses and pneumoviruses lacked predicted helical structure in this

region. Furthermore , most sequences were predicted to form two alpha

helices withan intervening space as observed in the NDV HN protein.

To investigate the importance of each of these NDV HN protein heptad

repeat regions for fusion as well as determine the relative importance of



specific amino acids and helical structure, conservative mutations of

hydrophobic residues were made , changing heptad repeat " " position

residues to alanine. Alanine was chosen because it has a short side chain

and should, therefore , not disrupt a potential helical structure (6). Mutations

were made to generate the mutants L 7 4A , V81 A , V88A , 196A, 1103A, and L 11 OA

(Fig. 14).

ression of mutant roteins. To characterize the expression of these mutant

proteins , Cas cells were transfected with either wild-type or mutant HN cDNA

as described in Materials and Methods. HN proteins were immunoprecipitated

with anti-NDV antisera and analyzed by SDS-PAGE under reducing (Fig. 16A) or

non-reducing (Fig. 16B) conditions. Mutant HN proteins were

immunoprecipitated in varying amounts , although the amounts precipitated

were typically at least as high as the wild-type protein (Fig. 16A). Disulfide-

linked dimers were observed for each of the mutant proteins suggesting that

the conformation necessary for dimer formation was present (Fig. 16B).

Cytoplasmic extracts containing each of the mutant proteins were

immunoprecipitated with five different conformation-specific monoclonal

antibodies (Fig. 16C , Materials and Methods). In every case , the mutant

proteins were precipitated at levels as least as high as observed for the wild-

type protein , supporting the idea that the proteins were folded correctly. Clearly,

all the mutant HN proteins were expressed and stable within the cell for at least

a 2 h chase period.



Cell surface proteins were analyzed by SDS-PAGE under reducing or

non-reducing conditions (not shown) and amounts detected were quantitated

by densitometry. All mutant proteins were detected at the cell surface , although

at differing levels (Table 2). Disulfide- linked dimers were observed for each

mutant protein at the cell surface although the apparent size of the dimers

observed varied slightly from that of the wild-type protein in some experiments.

Biolo ical activities of mutant roteins. The effect of each mutation on the three

activities (attachment, neuraminidase and fusion promotion) was determined.

We analyzed attachment activity by assaying red blood cell binding or

hemagglutination (HA). Chicken red blood cells were bound to the surface of

Cas cells expressing either wild-type or mutant proteins (Table 2). In cells

expressing vector alone, virtually no binding was observed , while bound red

blood cells were seen in cells expressing the wild-type HN protein (+). The

mutant V88A bound red blood cells at least at wild-type levels while the other

mutant HN proteins bound at levels greater than wild-type. Clearly, all mutant

proteins retained attachment activity.

NA activity of each mutant protein was determined by quantitating the

ability of each mutant protein to cleave the substrate neuraminlactose (Table

2). L74A and V81A had greater NA activity than the wild-type protein. The other

mutant proteins had decreased NA activity ranging from 14-91%. Interestingly,

two mutant proteins (11 03A and L 11 OA) had little NA activity and greater than

wild-type levels of attachment activity. These data suggest that NA and HA



activities of the NDV HN protein can be genetically separated as has been

previously reported (55).

Fusion promotion was determined by analyzing syncytia formation after

coexpression of each mutant protein with the NDV fusion (F) protein in Cas

cells (Fig. 17). Every mutation negatively affected fusion although to varying

degrees. Mutations in the first heptad repeat decreased activity to 8 to 13% of

the wild-type protein. Mutations in the second heptad repeat had slightly less

effect as fusion activity decreased to 16 to 31 % of the wild-type protein. Thus a

conservative substitution of anyone of these hydrophobic amino acid residues

produced an HN protein with greatly decreased fusion activity.

ression of roteins with double substitutions. After determining that alanine

substitutions for " " position amino acids negatively affected fusion , we asked if

mutant proteins with double substitutions would further inhibit fusion. Similar

double mutations in the F protein had been previously shown to decrease

fusion to a much greater degree than single mutants (52). Thus the double

mutants V81/L 11 OA and L96/L 11 OA were generated. These mutants were

expressed at the cell surface and appeared to be folded correctly (Fig. 16

Table 2). Both mutants bound red blood cells at higher levels than the wild-

type protein , as was observed for each of the corresponding single mutant

proteins (Table 2). NA activities for both proteins were much lower than

observed for the wild-type protein , but not as low as was observed for the

single mutant L 11 OA (Table 2). Surprisingly, the fusion activity of each mutant



was not decreased further than the activities of the single substitution mutants

(Fig. 17).

Mutant roteins containin methionine substitutions. We next asked if we

could further disrupt fusion promotion with the substitution of a bulky amino

acid for leucine in the " " position of each heptad repeat. Methionine residues

have a longer side chain than leucine and could, therefore , more efficiently

inhibit the HN protein heptad repeats from interacting with the F protein by

stearic hindrance. Alternatively, the methionine residue may substitute for

leucine and restore activity. The mutant proteins L74M and L96M were

generated to explore these possibilities (Fig. 14).

Immunoprecipitated mutant proteins , analyzed under reducing

conditions (Fig. 16A), showed that each of these mutants was as stable as the

wild-type protein and , like the wild-type HN protein , was recognized by both

NDV antisera and conformation-specific monoclonal antibodies (Fig. 16C).

Disulfide- linked dimers were observed for each of the mutant proteins (Fig.

168). Mutant HN proteins expressed at the cell surface were

immunoprecipitated and analyzed by SDS-PAGE under reducing and non-

reducing conditions (not shown). As observed for the " " position alanine

mutants , these proteins were expressed at the cell surface (Table 2) and

formed disulfide-linked dimers.

Biolo ical activities of methionine mutant roteins. The NA activity of L74M

dropped from 122% (observed for L74A) to 53% (Table 2), and there was a



decrease in HA levels from above wild-type to slightly below wild-type (Table 2).

Little change in NA activity was observed for L96M (as compared to L96A),

however HA activity decreased from above wild-type to levels equal to wild-type.

Fusion promotion activity of L74M was increased slightly over that observed for

L74A (8% vs. 15%), but a decrease was observed for L96M (19% vs. 30% for

L96A) (Fig. 17). While this decrease was substantial , it was not lower than

levels observed for some of the other heptad repeat mutants.

Substitutions in other ositions of the redicted helices. Coiled-coil

interactions are mediated by hydrophobic or neutral amino acids in the " " and

d" positions of a heptad repeat. To address whether alanine substitutions in

heptad repeat positions other than " " influenced the fusion promotion activity

of the HN protein , the following mutants were generated. Leucine 97 ("b"

position) and isoleucine 1 02 (" " position), which are positioned in the second

heptad repeat region of the stalk domain , were mutated resulting in L97 A and

1102A, respectively. A residue between the two repeats , Leu 90 , was also

mutated (L90A) (Fig. 14).

Biolo ical activities of alanine mutant roteins in other ositions of the

redicted helices. Alanine substitutions for hydrophobic residues in a "

position (L97 A), in a " " position (1102A) or between the heptad repeats (L90A)

generated proteins with wild-type epitopes , stability, and expression levels (Fig.

16). These mutations had little or no effect on the NA activities of the proteins

(Table 2). L90A and L97A had wild-type HA activities , while HA activity was



increased to a very high level for 1102A (Table 2). Fusion promotion activity was

decreased to 13% of wild-type for L90A, a level observed for the other

substitutions in heptad repeat 1 (Fig. 17). L97A also showed a decrease in

fusion (18% of wild-type) comparable to levels observed for other substitutions

in heptad repeat 2. 1102A had less of an effect on fusion promotion than any of

the other mutants with fusion promotion at 60% of wild-type.



Discussion

Heptad repeat motifs are important for fusion activity and are found in the

fusion proteins of a variety of viruses including retroviruses (envelope protein),

coronaviruses (peplomer protein), paramyxoviruses (fusion protein) and

influenza viruses (HA protein) (10). Heptad repeats in many of these proteins

have been shown both by site-directed mutagenesis and peptide inhibition

studies to be critical for fusion (7 , 33 , 51 , 70 , 71 , 73). Indeed , for the NDV F

protein it has been shown that mutations of heptad repeat 1 which is adjacent

to the fusion peptide (58), as well as the transmembrane adjacent heptad

repeat 2 (the leucine zipper) domains abrogate fusion (7 , 52). Furthermore

peptides with sequences from two heptad repeats inhibit fusion (75 , 77). The

transmembrane-spanning region of the NDV HN protein also contains a

heptad repeat of leucine residues which , when mutated , destabilized the

tetrameric structure of the mature protein and altered the biological activities of

the protein including fusion promotion (40).

A heptad repeat motif is that in which a hydrophobic amino acid is

repeated every seven (heptad) residues , denoted as a , b , c , d , e , f, g (37).

Heptad repeats which contain hydrophobic or neutral residues in the " " and

d" positions of the repeat can form alpha-helices and are able to interact with

other heptad repeats by forming coiled-coils (10 , 37). Proteins which interact in



this matter are diverse and include cFos-cJun heterodimer, the catabolite gene

activator protein (CAP) in E. coli GCN4 in yeast and the influenza HA protein

(37). Clearly, the coiled-coils are involved in protein-protein interactions

important in many diverse systems.

Chimeric studies of paramyxovirus HN proteins have shown that the

presumed stalk domains of various HN proteins confer F protein specificity in

fusion , promotion (17 , 62 , 67). One interpretation of these data is that the stalk

domain of the HN protein is important for interactions with the F protein.

Because of the importance of paramyxovirus F protein heptad repeat motifs , we

wanted to investigate a region containing two heptad repeats in the presumed

stalk domain of the NDV HN protein (amino acids 74-110). This region of the

HN protein was analyzed for secondary structure using prediction software

from the Baylor College of Medicine (Fig. 15). Two alpha-helical heptad repeat

regions separated by a non-helical region of 7 amino acids were predicted.

The structure of proteins with amino acid substitutions presented here were

similarly analyzed (Fig. 18). Importantly, none of the substitutions resulted in a

decrease of predicted alpha-helical structure. Furthermore , the 7 amino acid

region between the two helices was predicted to gain helical structure in the

mutants V88A, L96A , 1103A and L96/L 11 OA.

The paramyxoviruses SV41 , MuV , SV5 , hPIV3 , avian parainfluenza 4 and

SeV HN proteins were similarly analyzed for secondary structure and found to

contain heptad repeat regions predicted to form alpha-helices (Fig. 15). All but



one of the viruses analyzed (SeV) were predicted to contain a non-helical space

between the two helices. Disruptions of alpha-helical regions such as these

are known as discontinuities and may introduce fixed bends , flexible regions or

provide boundaries between coiled-coils (48). Discontinuities are quite

common in coiled-coils and consist of several groups (37 , 48). Non-helical

regions do not have the structure of an alpha-helix (these are present in all but

one of the paramyxoviruses analyzed), skip residues are the addition of extra

amino acids in the heptad repeat (observed for NDV , SV41 , SeV), and stutters

occur when 3 residues are dropped from the heptad repeat (MuV and SV5 have

one stutter, hPIV3 has two stutters in a row). Clearly such discontinuities

potentially impart many different structures to alpha-helical regions of proteins.

Conservation of heptad repeats , presumed alpha-helical regions , as well as

discontinuities in the presumed stalk of paramyxovirus HN proteins suggest

that these structural determinants may be important to the structure and

function of the protein.

We generated four sets of mutants to begin to elucidate the mechanism

by which the heptad repeat domain of the HN protein may contribute to fusion.

The first set of mutants changed the hydrophobic " " position residues of the

first (more amino terminal) heptad repeat to the hydrophobic residue alanine

generating L74A, V81A and V88A. Similarly, a second set of mutants L96A

1103A, and L 110A were generated in the " " position residues of the second

heptad repeat. A double mutation containing an " " position substitution in



each repeat (V81/L 110A), as well as a double mutation with two changes in the

second heptad repeat (L96/L 11 OA) were generated as well. A third set of

mutants introduced a methionine residue in place of leucine in heptad repeat

" positions generating L74M and L96M. Because methionine is bulkier than

leucine , these substitutions could potentially stearically prevent a possible HN

and F protein interaction and thus more efficiently inhibit fusion. Alternatively,

the methionine could substitute for leucine , restoring activity. Afinal set of

mutations introduced alanines into heptad repeat positions other than the "

position creating L97 A and 1102A, and into the 7 amino acid space between the

two heptad repeats generating L90A.

All the mutant HN proteins appeared to fold correctly and to retain wild-

type epitopes as determined by immunoprecipitation with polyclonal as well as

conformationally sensitive monoclonal antisera against the HN protein.

Furthermore , that the oligomeric structure was not disrupted was shown by the

formation of disulfide- linked dimers. In addition , sucrose density gradients

showed no shifts in sedimentation from the tetramer position to a monomer or

dimer position which would indicate a loosely associated or absent tetramer

(not shown). 

All the mutant proteins were able to bind red blood cells. Indeed , most

of these mutations resulted in mutant proteins with increased , in some cases

substantially greater abilities , to bind red blood cells. These results argue that

specific amino acids in the stalk domain of the HN protein are not critical for



attachment activity because the domain is highly tolerant of amino acid

substitutions which appear for the most part to increase its activity.

Neuraminidase activities of the mutant proteins varied greatly with V81A

having 157% of wild-type NA activity and L 11 OA having 14% of wild-type NA

activity. Approximately half of the mutant proteins had wild-type or slightly lower

NA activities while the other half showed decreased NA activities. There was

not an obvious pattern of preferred amino acids in specific heptad repeat

positions for NA activity. The presence of mutants with less than wild-type

activity, however, would argue that individual amino acids in this region appear

to be important for NA activity. While these results suggest that the overall

conformations of the mutant proteins may be abnormal , the presence of

epitopes similar to the wild-type protein as well as wild-type levels of

oligomerization suggest that any conformational alterations are subtle. Levels

of NA activity do not correlate in any obvious way with the fusion activities of the

mutants.

All the mutant proteins negatively affected fusion. Defects in fusion

promotion were not due to defects in HA activity as all the mutant proteins were

able to bind red blood cells. These results reinforce the previous conclusion

that fusion promotion and attachment (as well as NA activity) can be genetically

separated (56). Furthermore and most importantly, these mutant proteins

(L74A , V81A, L96A, L97A , 1102A, L96M and L90A) illustrate a requirement in the

HN protein for specific amino acids in this region of the protein for fusion



promotion. Single, extremely conservative changes (L74A, V81A) virtually

eliminated fusion promotion activity. Additionally, these mutations illustrate that

the " " positions of the helices were not more critical than other positions for

fusion promotion. These results suggest that the presumed alpha helical

structure of the heptad repeats is not sufficient for fusion , although one cannot

rule out the possibility that a helical structure is necessary for fusion promotion

as none of the mutants generated were predicted to lessen the probability of

forming an alpha-helix.

As mentioned previously, paramyxovirus F proteins contain two heptad

repeat regions which are conserved and have been shown to be critical for

fusion. We propose that it is possible for the conserved heptad repeat region

of the paramyxovirus HN protein to interact with the heptad repeats of the F

protein , since the helical nature of these regions in both proteins presents the

possibility of coiled-coil interactions between the proteins. The importance of

specific residues for fusion promotion may indicate specific interactions

between the proteins. One intriguing possibility is that the HN heptad repeats

may bind to the heptad repeats HR1 and HR2 of the F protein , serving to keep

these two regions apart. The discontinuity between the helices would give the

HN protein the flexibility to participate in such an interaction. Upon binding of

the HN protein to its receptor, a conformational change may occur in both

proteins , disrupting the HN-F interaction and resulting in the release of the

fusion peptide into the target membrane. Individual amino acids would create



a level of specificity which agrees with the observations that HN and F proteins

from different paramyxoviruses do not complement each other to promote

fusion.



TABLE 2. Biological activities of mutant proteins

% of wild-type activity

Cell surface 
(mean +/- SD) (mean +/- SD)

NA(CS)a

L74A 102+/- 124+/- 122

V81A 128+/- 201 +/- 157

+++

V88A 81 +/- 21+/-

L96A 77+/- 70+/-

1103A 59+/- 10+/-

L 11 OA 76+/- 11 +/-

V81/L 110A 112+/- 43+/-

+++

L96/L 11 OA 55+/- 12+/-

+++

L74M 102+/- 54+/-

+/-

L96M 72+/- 69+/-

L90A 67+/- 59+/-

L97A 79+/- 79+/- 100

1102A 111 +/- 136+/- 123

+++

NA(CS), NA value normalized to cell surface (CS) expression.

+/-

, slightly lower than wild-type level of binding; + , wild-type level of binding;

, greater than wild-type level of binding; +++ , much greater than wild-type

level of binding.



V81/LII0A

L96/LII0A

L90A L97A Il02At, 
LGSNQDVVDRIYKQV ALESPLALLNTESIIMNAITSL

L74A
L74M

V81A V88A L96A
L96M

Il03A LII0A

HRA HRB
7 AA space

Legend to figure 14: Linear map of mutations. Amino acid sequence for the
wild-type HN protein showing residues 74-110. The heptad repeat "
positions are shown in a larger font, heptad repeat regions A (HRA) and B
(HRB) are denoted by a line below the sequence , and the seven-amino-acid (7
AA) sequence between the heptad repeats is denoted by a line below the
sequence. Mutations of the wild-type protein are indicated with arrows.



SSP: NDV LGSNQDVVRIQV ALESPLALLNTESIIMAlTSLIIIIIIIIIIIIIIIII 111111111111111

SV 41 IKSMILNQIL YNAAPLKISTESVLLAALIIIIIIIIIIIIIIII 11111111111111

MuV AA VISA VGV1QVlGvrSLPLQIEGNQNQLLSTLA TICTNQVIIIIIIIII 1111111111111111

SV5 IIDLLNNSV ANQllSA V ALPLQLDTLESTLL TAISLIIIIIIIIII 111111111111111111

hPIV3 INFMEITEKIQMASDNTLIQSGVNTRL TIQSHVIIIIIIIIIIIIIIIII IIIIIII 111111111111

avian LDTRNAALHILQLNTEAN
para4 I I I I I I I I I I I I I I I I I I I I I I

SeV LNMSSREVKSL TSLIRQEVI VNQSSVQTGIPVL
1111111111111111111

NNSSP: NDV LGSNQDVVRIQV ALESPLAINTSIIAISLIIIIIIIIIIIIIIIII 11111111111

SV 41 IKSMILNQIL YNAAPLKISTESVLLAALIIIIIIIIIIIIIIIIIIIIIII 1111111111111

MuV AA VISA VGV1QVlGvrSLPLQIEGNQNQLLSTLATICTQVIIIIIIIII 1111111111111

SV5 IIDLLNNSV ANQllSA V ALPLQLDTLESTL TAISLIIIIIIIIIIIIIIIIIII 111111111111111111

hPIV3 INFMEITEKIQMASDN1LIQSGVNL TIQSHV
11111111111111111

++ 

avian LDTRAALHILQLNTEAN
para 4 

++ 

I I I I I I I

SeV LNMSSREVKSL TSLIRQEVI VNQSSVQTGIPVL

++ 

1111111111111111111111111

Legend to figure 15: Secondary structure prediction of paramyxoviruses and
rubulaviruses. Secondary structure prediction of NDV amino acids 74- 110
using Baylor College of Medicine SSP (segment-oriented prediction) and
NNSSP (nearest-neighbor prediction) programs (1). The corresponding
regions of other rubulaviruses and paramyxoviruses were similarly analyzed. 
denotes areas predicted to be alpha-helical; a line above the sequence
denotes a space between the two heptad repeats. Para , parainfluenza virus.
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Legend to figure 16: Expression of mutant HN proteins. At 48 h posttransfection
cells transfected with wild-type or mutant cDNAs were radiolabeled for 2 hand
chased for 2 h in non-radioactive media. Cells were lysed , post-nuclear supernatants
were immunoprecipitated with polyclonal antisera and analyzed by SDS-PAGE on 8%
gels in the presence (A) or absence (B) of reducing agent. (C) Proteins in post-
nuclear supernatants were immunoprecipitated with the conformation-specific
monoclonal antibody anti- , which is representative of results obtained with four
other monoclonal antibodies , as described in Materials and Methods. SVL , vector;
wild-type , wild-type HN protein; D , disulfide- linked HN protein dimer; M , monomeric
HN protein. A Molecular Dynamics densitometer was utilized to image the auto-
radiograph and this figure was generated from Adobe photoshop without enhance-
ment. The images presented accurately represent the origional autoradiographs.
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Legend to figure 17: Syncytium formation promoted by mutant HN proteins. At
48 hr post-transfection , twenty of the largest syncytia were counted. The
background fusion from cells expressing vector alone was subtracted and values
were normalized to cell surface expression.



NDV LGSNQDVVDRIYKQV ALESPLALLNTESIIMNAITSL

+++++++++++++++++ ++++++++++++

L74A AGSNQDVVDRIYKQV ALESPLALLNTESIIMNAITSL

+++++++++++++++++ ++++++++++++

V81A LGSNQDV ADRIYKQV ALESPLALLNTESIIMNAITSL

+++++++++++++++++ ++++++++++++

V88A LGSNQDVVDRlQAALESPLALLNTESIIMNAITSL

+++++++++++++++++ ++++++ ++++++++++++

L96A LGSNQDVVDRIYKQV ALESPLAALNTESIIMNAITSL

+++++++++++++++++ ++++ ++++++++++++

II03A LGSNQDVVDRIYKQV ALESPLALLNTESIAMNAITSL

+++++++++++++++++ ++++++++++++++++++++

LllOA LGSNQDVVDRIKQV ALESPLALLNTESIIMNAITSA

+++++++++++++++++ ++++++++++++

V81/LllOA LGSNQDV ADRIYKQV ALESPLALLNTESIIMAITSA

+++++++++++++++++ ++++++++++++

L96/LllOA LGSNQDVVRIYKQV ALESPLAALNTESIIMAITSA

+++++++++++++++++ ++++++ +++++++++++

L74M MGSNQDVVDRIKQV ALESPLALLNTESIIMNAITSL

+++++++++++++++++ ++++++++++++

L96M LGSNQDVVDRIYKQV ALESPLALLNTESIIMNAITSL

+++++++++++++++++ ++++++++++++

L90A LGSNQDVVDRIKQV ALESPLAMLNTESIIMNAITSL

+++++++++++++++++ ++++++++++++

L97A LGSNQDVVDRIYKQV ALESPLALANTESIIMAITSL

+++++++++++++++++ ++++++++++++

II 02A LGSNQDVVDRIYKQV ALESPLALLNTESAIMNAITSL

+++++++++++++++++ ++++++++++++

Legend to figure 18: Secondary structure prediction of mutant HN proteins.
Secondary structure prediction (NNSSP program) of amino acids 74-110 for the
wild-type HN protein and mutant HN proteins. denotes areas predicted to
have alpha-helical structure.



CHAPTER 4

Discussion

It has been known for many years that, for NDV, there is a strict

requirement for HN and F proteins to be expressed in the same cell in order for

syncytia formation to occur (30). The attachment protein requirement is

observed for a majority of the members of the paramyxovirus family (30). The

mechanism of cooperativity between the surface glycoproteins which leads to

membrane fusion is unknown and has long been a controversial topic. When I

began my thesis research , I set out to elucidate the mechanisms by which

viral-mediated membrane fusion ensues. Initial experiments to detect

coimmunoprecipitation of HN and F proteins were carried out in transfected

cells. It was hoped that mutant proteins could be identified that were negative

in fusion and concomitantly negative for coimmunoprecipitation as well. I thus

hoped to map regions of both proteins that were responsible for the protein-

protein interactions necessary for membrane fusion. Coimmunoprecipitation

proved to be elusive in a transfected cell system , so I utilized an infected cell

system. Infected cells enabled me to characterize where in the cell an HN-

protein interaction may occur as well as which populations of proteins may be

involved and sizes of potential complexes that may be formed. Having



identified an interaction between HN and F proteins during an infection , and

having failed at any attempts to coimmunoprecipitate the two proteins in

transfected cells , I next looked for regions in the HN protein that may be critical

for fusion promotion. Two heptad repeats were identified carboxy terminal to

the transmembrane domain. These heptadic residues were mutated singly

and doubly and were indeed found to be important for fusion promotion.

Infected cells. Whether the HN and F proteins of paramyxoviruses interact has

long been a controversial subject in the field. Utilizing NDV infected Cas cells

enabled us to detect a potential interaction between the HN and F

glycoproteins. Not only was the HN protein found to be associated with the F

protein , it was determined to be associated with the Fo protein as well. These

results are different from two reports which investigated crosslinking of MV and

SV5 HA/HN and F proteins. Malvoisin and Wild reported that when they

crosslinked MV proteins expressed from a vaccinia virus vector driven system

they were able to coimmunoprecipitate the HA protein with the F 1 protein but not

with the Fo protein (38). When NDV infected cells that had been treated with

crosslinker were lysed under the conditions that Malvoisin and Wild used , we

found that only the HN and F proteins could be coimmunoprecipitated. It

follows that the likely reason for not detecting a MV HA- interaction was due to

the insQlubility of this crosslinked species in the lysis buffer used. In another

report Russell at al. did not detect HN-F protein complexes in SV5 infected cells

that were treated with crosslinker (53). In this study, infected cells were



removed from a monolayer and proteins were crosslinked when the cells were

in suspension , while our infected cells were exposed to crosslinker as an

intact monolayer. Removal of cells from a monolayer may result in

rearrangement of the viral proteins and could explain why our results differ from

those of Russell et al.

When crosslinked complexes obtained from NDV infected cells were

immunoprecipitated and analyzed by SDS-PAGE , complexes of various sizes

were observed. When immunoprecipitated with either HN or F specific

antisera , three discrete bands were detected on SDS-PAGE gels between 160-

300 kDa as well as larger, heterogeneous species. Given the sizes of the HN

and F proteins (Fo-66 kDa , F - 64 kDa , HN-74 kDa), the three distinct species

observed are consistent with complexes containing 1-4 F proteins and 1-4 HN

proteins. Each distinct species was shown to contain HN , Fo and F proteins

when analyzed by SDS-PAGE in the second dimension whether

, ;,

immunoprecipitated with HN or F specific antisera. F-F protein complexes may

be present as well as these have been detected in transfected cells treated
.J:

with crosslinker (unpublished results). Three distinct bands migrating

between 160-300 kDa may represent the minimal subunits of a larger structure

that is not completely stabilized by crosslinking and is partially disrupted upon

lysis. Such a structure may be too large to be resolved by SDS-PAGE as there

was immunoprecipitated material that remained in the loading wells and did

not enter the gel in the presence of crosslinker. Gradient studies would be



useful in determining the sizes of very large potential HN-F protein complexes.

The formation of large complexes has been observed when synthetic peptides

of the NDV F protein HR1 and HR2 regions were mixed together. The sizes of

such complexes were determined to be 30mers in solution (unpublished data),

which supports the notion that very large structures may be present in the

fusion pore.

Alternatively, the association observed between the HN and F proteins in

infected cells could be due to associations present during the budding process

and not due to viral-mediated membrane fusion. This possibility appears

unlikely for several reasons. The M protein , which is thought to be a driving

force in budding, has been shown to interact with the HN and F proteins (31).

No association of the M protein in the HN-F protein complexes was ever

detected. One explanation for the lack of a detectable association among the

three proteins is that the time point examined was early in infection; budding is

a process which occurs late in infection and thus should not be observed.

Indeed , the HN-F protein interaction was observed as early as 4.25 h post-

infection arguing that the interaction observed was not involved in the budding

. .

process.

, ,

Another explanation for the HN-F protein association could be an

artifactual association observed due to the high levels of viral protein

expression during an infection. This possibility is unlikely, however, because
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associations were observed early in infection when the levels of viral proteins

were low.

The interaction between the HN and F proteins occurred independent of

Fa cleavage. This observation supports the notion that the HN and F proteins

may interact intracellularly and may interact prior to transport to the trans Golgi

where Fo is processed into F and F . Furthermore , the interaction was

detected as early as a 5 min pulse. This result is consistent with a protein-

protein association occurring in the rough endoplasmic reticulum. An

intracellular interaction between HN and F proteins is supported by the results

of Tanaka et al. who reported that an ER retention signal on hPIV3 F protein

resulted in the retention of the hPIV3 protein in cells coexpressing both

proteins, implying an intracellular interaction (63). Tong and Compans also

reported that an hPIV2 F protein with an ER retention signal could retain the

hPIV2 HN protein within the cell , also supporting that notion that an interaction

between the HN and F proteins occurs in the ER (65). Paterson et aI. , however

found that when SV5 or hPIV3 glycoproteins with ER retention signals were

expressed in cells , the ER tagged attachment protein did not cause retention of

the F protein and ER tagged F protein did not promote the retention of the

attachment protein (49). This study concluded that any potential HN-F protein

interactions do not occur intracellularly and they may occur instead at the cell

surface. One explanation for the conflicting results of Paterson et al. is the

construction of the F proteins. In the Tong and Compans and the Tanaka et al.



reports , the F protein with the ER retention signal lacks a cytoplasmic tail as

well as a transmembrane domain while the HN and F proteins described in the

Peterson et al. report contained an ER retention signal on the cytoplasmic tails.

The cytoplasmic tails and/or transmembrane domains may playa role in HN-

interactions. Modifications of these domains may change the conformation of

the proteins and therefore possibly alter any potential HN-F protein interactions.

Indeed , mutations made in the transmembrane region of the NDV HN protein

and the cytoplasmic tail of NDV and SV5 F proteins have a negative effect on

fusion promotion (2 , 40 , 57).

The inability to detect a homotypic protein-protein interaction in cells

expressing SV5 or hPIV3 HN and F proteins (49) differs from the observation of

HN-F protein interactions in NDV infected cells (reported in Chapter 2). Lack of

an observable retention of HN and F proteins by F and HN proteins containing

an ER retention signal does not rule out the interaction of a small population of

HN and F proteins in transfected cells which serve to promote fusion.

Alternatively, the interaction may be weak and pulled apart when one of the

proteins is forced to remain in the ER.

The HN-F protein interaction observed in NDV infected cells was

observed to the same extent in the presence or absence of HN binding to its

receptor (Chapter 2). This data conflicts with a recent report by Deng et al.

where an HN mutant protein which was both attachment and fusion deficient

' ;

was unable to coprecipitate the homologous F protein (16). Based on the



properties of this mutant protein the authors concluded that the first step of

fusion is mediated by the HN protein binding to its receptor which then triggers

an interaction between the HN and F proteins leading to fusion. It was reported

that the mutant HN protein was recognized by a panel of conformation-sensitive

monoclonal antisera although the data was not shown. Aberrant migration of

the protein was observed on SDS-PAGE gels , however , suggesting altered

glycosylation or an aberrant conformation. A slightly misfolded HN protein may

not interact with the F protein due to an altered conformation and not

necessarily due an inability to bind the receptor.

Transfected cells. After detecting an HN-F protein interaction in infected cells , I

sought evidence of a similar interaction in transfected cells , a system in which

mutant proteins could be characterized. Proteins deficient in fusion could be

assayed to determine which regions of both proteins functionally interact to

promote fusion. Proteins deficient in attachment (HN) or cleavage (F) could

determine if such activities are necessary for an interaction to occur in

transfected cells. Further, proteins deficient in transport to the plasma

membrane as well as proteins containing retention signals could be utilized to

explore how early in intracellular transport the proteins interact.

Preliminary investigations of potential interactions between the two

proteins in transfected cells focused upon the wild type HN and F proteins. 

interactions were detected by coimmunoprecipitation or after chemical

crosslinking utilizing various crosslinking compounds. The inability to detect



an interaction may have been due to differences in infected cells relative to

transfected cells. One major difference between transfected and infected cells

is the different levels of expression of viral proteins. In transfected cells the

level of protein expression is low and , if only a small population of proteins is

involved in the fusion event, perhaps detecting complexes is beyond our level of

sensitivity. In order to increase the number of HN and F proteins involved in the

fusion event at the cell surface , attempts were made to synchronize fusion.

This was accomplished by various methods of blocking fusion and then

removing the block so that fusion could occur in a synchronous fashion among

all fusion-competent proteins. One method of blocking fusion was to incubate

cells in neuraminidase to cleave receptors followed by the addition of an

overlay of cells containing receptors to enable many proteins to bind and

potentially fuse at the same time. Another approach was to express an F

protein which was not cleaved intracellularly and cleave it at the cell surface in

order to allow all the F proteins to become fusogenic and engage in fusion at

the same time. Evidence of an interaction was not obtained using either of

these methods. It is possible that the HN-F protein interaction occurs

intracellularly as was observed in infected cells , so that synchronization at the

cell surface did not increase the numbers of proteins fusing to levels of

detection by our system. Alternatively, a potential interaction at the plasma

membrane of transfected cells may be transient and thus difficult to detect.
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In order to address the question of a transient interaction , cotransfection

experiments were performed using various mutant HN and F proteins. It was

hoped that the altered fusion phenotypes of some mutant proteins would be

due to a lack of dissociation of the complex at some step during the fusion

process , thus enabling detection of a normally transient interaction. A non-

fusion promoting HN protein as well as an HN protein which fused at levels

much higher than wild type were investigated. Fusion negative F proteins

which contained mutations in HR1 , HR2 , the cytoplasmic tail , and the fusion

peptide were also utilized. Attempts to detect an interaction between mutant

and wild type as well as mutant and mutant proteins proved to be

unsuccessful. Perhaps none of the mutant proteins remained associated with

its heterologous partner.

Infected cells contain other viral proteins and thus differ from transfected

cells. In order to investigate whether the presence of other viral proteins would

lead to the detection of an HN-F interaction , we cotransfected F , HN , NP and M

cDNAs , but were unable to detect an interaction between the glycoproteins

under these conditions. Perhaps the P and L proteins or the presence of a

nucleocapsid structure have an effect on the HN-F protein interaction. The

generation of an infectious clone would be interesting in this regard.

Another difference between transfected and infected cells is the

inhibition of host cell protein synthesis during an infection. We attempted to

imitate this effect by adding cycloheximide to cells to inhibit protein synthesis



after the expressed HN and F proteins were pulse- labeled. Once again an

interaction was not detected.

It is quite possible that there are other differences between infected and

transfected cells that are unknown and have , therefore , not been taken into

account. In this regard it is interesting to note that the only reports of HN-

protein interactions in transfected cells were in the context of a vaccinia virus

driven system (described in Chapter 1).

tad re eat mutants. The heptad repeat region of the HN protein was

found , like HR1 and HR2 of the F protein , to be critical for fusion promotion.

Single point mutations were generated which had wild type or greater levels of

HA and NA activities , but were diminished in the ability to promote fusion.

Heptad repeats have been shown to bind to one another , forming coiled-coils

and to mediate protein-protein interactions. One intriguing model based upon

the phenotypes of these mutant proteins is that the HN HRA and HRB regions

interact via coiled-coils with the HR1 and HR2 regions of the F protein. Support

for a potential interaction between these regions of the NDV HN protein and the

F protein comes from recent work by Deng et al (16). This group coprecipitated

NDV HN chimeras containing regions from hPIV3 (the same region of the stalk

where the point mutations in Chapter 3 were generated) with the NDV F protein.

A correlation between the inability to fuse and the inability to

coimmunoprecipitate both proteins was observed for three of the mutant

proteins investigated. One mutant protein was coimmunoprecipitated at low



levels although the mutant was capable of promoting fusion at lower levels

than observed for the wild-type protein. One interpretation of this data is that

the HN-F protein interaction was dissociated during the immunoprecipitation

due to a weaker interaction than was observed for the wild-type protein.

Chemical crosslinking of the mutant HN and F proteins could address whether

this is the case.

Viral fusion in other s stems. The best characterized viral fusion system is

influenza virus (31). X-ray crystallography studies of both the pre-fusogenic as

well as the fusogenic HA protein have been analyzed (8 , 9 , 72). It was

discovered that during activation the HA protein undergoes major

conformational changes mediated by the formation of a large , coiled-coil which

relocates the fusion peptide 70 A to promote its interaction with the target

membrane. Recent structural work has shown that the N- and C-terminal

residues of the flu HA protein are in very close proximity which would enable a

close approach between the target and attack membranes (12).

Structural studies have shown that like influenza , HIV-1 also undergoes

major conformational changes during membrane fusion which involve the

formation of coiled-coils (11 , 29). Common features observed in the HIV and

influenza viral fusion systems suggest that there are many similarities in how

viruses mediate membrane fusion. These viruses may therefore serve as

model systems to aid in elucidating the mechanisms of NDV-mediated

membrane fusion.



The role of the F protein in viral fusion . As stated earlier , paramyxovirus F

proteins contain two heptad repeat regions (HR1 and HR2) which are critical

for viral fusion. Mutations of either region diminish the protein s ability to fuse

, 52 , 58). Furthermore , a synthetic peptide corresponding to the HR1 region

of NDV was able to inhibit fusion in cells coexpressing the HN and F proteins

(75). This inhibition of fusion was found to be virus specific as the peptide did

not inhibit fusion in cells coexpressing SeV HN and F proteins. Peptides

corresponding to the NDV HR2 region were also found to inhibit fusion (33 , 76

77). Inhibition by synthetic peptides with sequences from heptad repeat

domains has been observed for many other viruses (including

paramyxoviruses) as well (31 , 51 , 70 , 71 , 73). Peptides corresponding to HR1

and HR2 have also been shown to form complexes with one another in

solution , and , when the two peptides were mixed prior to addition to HN and F

expressing cells, there was minimal inhibition of fusion , suggesting a

physiologically relevant interaction (26 , 75). Studies with SV5 have further

shown that the complexes between HR1 and HR2 form a structure with helices

arranged in an anti-parallel orientation which is very stable as determined by

protease digestion and thermostability assays (3 , 26). FPLC studies have also

shown the formation of NDV HR1-HR2 peptide complexes , although unlike the

SV5 report where a structure consistent with a trimer of heterodimers was

detected , the formation of very large structures was observed (in preparation).

Similar results were obtained with SeV synthetic peptides (18). The stability of



the SV5 HR1-HR2 complex implies that this interaction would only be observed

during or after the fusion event , as a large amount of energy would be required

to release the peptide into the target membrane if this stable interaction

occurred prior to fusion. Indeed , this agrees with results from other viral

systems such as influenza and HIV where fusion is thought to cause an

irreversible conformational change in the fusion protein. Recent studies with

NDV HR1 and HR2 peptides have determined that these peptides can self-

associate forming homotrimers (in preparation). If one assumes that the

thermostable heterooligomers observed in the SV5 system are an end-product

of fusion , then perhaps the homotrimers represent the structure of the F protein

prior to fusion. Influenza studies support this hypothesis in that the more

stable alpha-helical form of HA2 is thought to be the post-fusion form while the

less stable form where two alpha-helices are disrupted by a bend is thought to

be the pre-fusion form of the protein.

A fusion model for NDV. Drawing from what is known about fusion from the

influenza virus and HIV1 systems as well as paramyxovirus studies , certain

assumptions about NDV may be made. First, the F protein most likely exists in

two forms: a metastable pre-fusion form , and a stable , irreversible post-fusion

form. The peptide studies from paramyxoviruses mentioned above certainly

support the idea of the interaction of regions of the F protein in two separate

forms: F proteins containing interacting HR1-HR1 and HR2-HR2 regions , as

well as F proteins containing interacting HR1-HR2 regions. Second , a trigger



for the release of the fusion protein into the target membrane is necessary.

During the pH- independent fusion process observed in HIV infections , the

attachment protein is thought to provide this trigger. For NDV, the HN protein

likely serves this function. Another assumption that may be made is that

heptad repeat regions which form coiled-coils are critical for fusion promotion.

Indeed , these regions have been shown to be critical for viral fusion in many

viral systems including paramyxoviruses.

The following model is one possible mechanism by which the HN and F

proteins of NDV may cooperate in order to promote membrane fusion. 

stated earlier, evidence exists for the association of HR1 and HR2 peptides

forming both homologous and heterologous oligomers. If indeed the stable

heterologous form represents the post-fusion conformation of the protein , then

these regions of the protein should be kept apart prior to the fusion event. The

HN protein may serve this role by interacting with the F protein either during or

shortly after synthesis. Evidence for an early interaction in NDV- infected cells

was reported in Chapter 2. A protein-protein interaction may be mediated via

the formation of coiled-coils between the membrane proximal HRA of the HN

protein and HR2 of the F protein and between the membrane distal HRB and

HR1 regions (Fig. 19). The potential non-helical structure predicted to exist

between HRA and HRB would impart flexibility in the HN protein and possibly

enable it to bend , forming a structure by which the interacting HRB and HR1

regions point back down toward the membrane. Upon binding of the HN



protein to its receptor, a conformational change may occur causing a

rearrangement of the HN protein at the bend between the helices and thus a

rearrangement of the associated F protein. This could potentially enable the F

protein to relocate the HR1 region toward the target membrane in an event

somewhat analogous to that observed for influenza virus and HIV. This

rearrangement would result in the insertion of the fusion peptide into the attack

membrane and potentially lead to a close approach of the attack and target

membranes (Fig. 20A). Studies with synthetic peptides from NDV have shown

that the HR1 peptide can self associate into very large complexes while the

HR2 peptide self associates as trimers (unpublished data , Matthew

Abramowitz and Trudy Morrison , Morrison laboratory). After insertion of the

fusion peptides into the target membrane , the adjacent HR 1 region may self

associate into a large structure while the HR2 region associates as a trimer

placing a strain on the membranes. Such a strain may further the dimpling that

was initiated by the insertion of the fusion peptide into the target cell , and lead

to hemifusion. The final stages of fusion may involve the association of HR1

and HR2 in the same membrane (Fig. 20B). Whether the HN protein is

involved in these latter steps of the fusion process is unknown , although

infected cell studies have shown that the HN and F proteins could be

coimmunoprecipitated immediately after fusion was stimulated (Chapter 2). 

does appear likely, however, that the HN protein would dissociate from HR1

and HR2 in order for the association of these regions to occur. The HN protein
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may still associate with the F protein , however, via other regions in either or

both proteins.

Many steps of this model could be examined experimentally and would

serve to further define the roles of each protein in the fusion event. The

hypothesis that the HN and F proteins interact in order to prevent an HR1-HR2

association could be investigated by peptide studies. Studies where HR1 and

HRB or HR2 and HRA peptides are mixed and then assayed for binding to HR2

and HR1 , respectively, would show whether the HN peptides do indeed prevent

HR1-HR2 associations. Analyzing peptide associations in solution would

enable one to evaluate ifthere is the potential for the formation of HR1-HRB

and HR2-HRA heterooligomers and further, whether large complexes , which

could be the protein components of potential fusion pores , are formed. Finally,

such studies could be utilized to analyze peptides containing point mutations

particularly the HRAand HRB mutant proteins characterized in Chapter 3. This

approach would enable the elucidation of which residues are critical for HN-

protein associations as well as allow the investigation of both proteins for other

regions which potentially interact with the heterologous protein.

A mutational analysis of the putative non-helical region between HRA

and HRB whereby mutant proteins are generated that would cause a predicted

increase in alpha-helical character of the region could be analyzed for the ability

to promote fusion. If a bend between the helices is important for fusion

promotion , one would expect such mutant proteins to be deficient in fusion
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promotion. The importance of a highly conserved proline residue which is

located in this region could also be assayed for the ability to promote fusion as

it may be responsible for ensuring that the potential bend in the HN protein is

present at a specific angle necessary in the pre-fusion conformation of the

proteins.

Conformational changes in both proteins either before and after the

initiation of fusion would answer questions about the mechanism of fusion.

Cells expressing both proteins could be incubated in the presence of

neuraminidase in order to prevent attachment and subsequent fusion. The

neuraminidase could then be removed and the addition of an overlay of cells

containing receptor would then be used to promote maximal attachment and

fusion. Conformational changes could be monitored in a time course assay by

analysis with conformationally sensitive monoclonal antisera and by Triton

X114 binding.
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Legend to Figure 19. Potential interactions between the HR1 and HRB regions
and the HR2 and HRA regions of the NDV F and HN proteins , respectively. FP
fusion peptide; TM , transmembrane domain; tail , cytoplasmic tail domain; HR
heptad repeat domain.
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Legend to Figure 20. A fusion model. This is one possible model for NDV-
mediated membrane fusion. A conformational change in the HN protein
triggered by receptor binding in turn triggers a conformational change in the F
protein whereby HRB and HR1 dissociate , leading to the release of the fusion
peptide into the target membrane (A). HRA mayor may not remain associated
with HR2. The HR1 peptides associate in large structures while the HR2
peptides associate as trimers. Because the HR2 peptides don t associate as
closely as the HR1 peptides , there is a strain on the membrane of the attack cell
causing it to dimple and allowing close approach of the target and attack
membranes. (B) Once lipid mixing occurs , the HR1 and HR2 regions of the F
protein may associate as a trimer of heterodimers. HRA from the HN protein
mayor may not be a part of this complex. FP , fusion peptide; HR , heptad repeat
domain.
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