915 research outputs found

    On Conformal Infinity and Compactifications of the Minkowski Space

    Full text link
    Using the standard Cayley transform and elementary tools it is reiterated that the conformal compactification of the Minkowski space involves not only the "cone at infinity" but also the 2-sphere that is at the base of this cone. We represent this 2-sphere by two additionally marked points on the Penrose diagram for the compactified Minkowski space. Lacks and omissions in the existing literature are described, Penrose diagrams are derived for both, simple compactification and its double covering space, which is discussed in some detail using both the U(2) approach and the exterior and Clifford algebra methods. Using the Hodge * operator twistors (i.e. vectors of the pseudo-Hermitian space H_{2,2}) are realized as spinors (i.e., vectors of a faithful irreducible representation of the even Clifford algebra) for the conformal group SO(4,2)/Z_2. Killing vector fields corresponding to the left action of U(2) on itself are explicitly calculated. Isotropic cones and corresponding projective quadrics in H_{p,q} are also discussed. Applications to flat conformal structures, including the normal Cartan connection and conformal development has been discussed in some detail.Comment: 38 pages, 8 figures, late

    Cherenkov Telescope Array Data Management

    Get PDF
    Very High Energy gamma-ray astronomy with the Cherenkov Telescope Array (CTA) is evolving towards the model of a public observatory. Handling, processing and archiving the large amount of data generated by the CTA instruments and delivering scientific products are some of the challenges in designing the CTA Data Management. The participation of scientists from within CTA Consortium and from the greater worldwide scientific community necessitates a sophisticated scientific analysis system capable of providing unified and efficient user access to data, software and computing resources. Data Management is designed to respond to three main issues: (i) the treatment and flow of data from remote telescopes; (ii) "big-data" archiving and processing; (iii) and open data access. In this communication the overall technical design of the CTA Data Management, current major developments and prototypes are presented.Comment: 8 pages, 2 figures, In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    Get PDF
    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012. The results are compatible with fluctuations of the background. Upper limits on the neutrino fluence have been produced and compared to the measured gamma-ray spectral energy distribution.Comment: 27 pages, 16 figure

    Inclusive production of ρ0(770),f0(980)\rho^{0}(770), f_0(980) and f2(1270)f_2(1270) mesons in νμ\nu_{\mu} charged current interactions

    Full text link
    The inclusive production of the meson resonances ρ0(770)\rho^{0}(770), f0(980)f_0(980) and f2(1270)f_2(1270) in neutrino-nucleus charged current interactions has been studied with the NOMAD detector exposed to the wide band neutrino beam generated by 450 GeV protons at the CERN SPS. For the first time the f0(980)f_{0}(980) meson is observed in neutrino interactions. The statistical significance of its observation is 6 standard deviations. The presence of f2(1270)f_{2}(1270) in neutrino interactions is reliably established. The average multiplicity of these three resonances is measured as a function of several kinematic variables. The experimental results are compared to the multiplicities obtained from a simulation based on the Lund model. In addition, the average multiplicity of ρ0(770)\rho^{0}(770) in antineutrino - nucleus interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.

    The Antares Collaboration : Contributions to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague)

    Get PDF
    The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. Located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore, its main goal is the search for astrophysical high energy neutrinos. In this paper we collect the 21 contributions of the ANTARES collaboration to the 34th International Cosmic Ray Conference (ICRC 2015). The scientific output is very rich and the contributions included in these proceedings cover the main physics results, ranging from steady point sources, diffuse searches, multi-messenger analyses to exotic physics

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic

    The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)

    Get PDF
    Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    The ANTARES Collaboration: Contributions to ICRC 2017 Part II: The multi-messenger program

    Get PDF
    Papers on the ANTARES multi-messenger program, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    Search for heavy neutrinos mixing with tau neutrinos

    Get PDF
    We report on a search for heavy neutrinos (\nus) produced in the decay D_s\to \tau \nus at the SPS proton target followed by the decay \nudecay in the NOMAD detector. Both decays are expected to occur if \nus is a component of ντ\nu_{\tau}.\ From the analysis of the data collected during the 1996-1998 runs with 4.1×10194.1\times10^{19} protons on target, a single candidate event consistent with background expectations was found. This allows to derive an upper limit on the mixing strength between the heavy neutrino and the tau neutrino in the \nus mass range from 10 to 190 MeV\rm MeV. Windows between the SN1987a and Big Bang Nucleosynthesis lower limits and our result are still open for future experimental searches. The results obtained are used to constrain an interpretation of the time anomaly observed in the KARMEN1 detector.\Comment: 20 pages, 7 figures, a few comments adde
    corecore