70 research outputs found

    Neutron-rich Chromium Isotope Anomalies in Supernova Nanoparticles

    Get PDF
    Neutron-rich isotopes with masses near that of iron are produced in Type Ia and II supernovae (SNeIa and SNeII). Traces of such nucleosynthesis are found in primitive meteorites in the form of variations in the isotopic abundance of ^(54)Cr, the most neutron-rich stable isotope of chromium. The hosts of these isotopic anomalies must be presolar grains that condensed in the outflows of SNe, offering the opportunity to study the nucleosynthesis of iron-peak nuclei in ways that complement spectroscopic observations and can inform models of stellar evolution. However, despite almost two decades of extensive search, the carrier of ^(54)Cr anomalies is still unknown, presumably because it is fine grained and is chemically labile. Here, we identify in the primitive meteorite Orgueil the carrier of ^(54)Cr anomalies as nanoparticles (3.6 × solar). Such large enrichments in ^(54)Cr can only be produced in SNe. The mineralogy of the grains supports condensation in the O/Ne-O/C zones of an SNII, although a Type Ia origin cannot be excluded. We suggest that planetary materials incorporated different amounts of these nanoparticles, possibly due to late injection by a nearby SN that also delivered ^(26)Al and ^(60)Fe to the solar system. This idea explains why the relative abundance of ^(54)Cr and other neutron-rich isotopes vary between planets and meteorites. We anticipate that future isotopic studies of the grains identified here will shed new light on the birth of the solar system and the conditions in SNe

    Ion distribution and ablation depth measurements of a fs-ps laser-irradiated solid tin target

    Get PDF
    The ablation of solid tin surfaces by an 800-nanometer-wavelength laser is studied for a pulse length range from 500 fs to 4.5 ps and a fluence range spanning 0.9 to 22 J/cm^2. The ablation depth and volume are obtained employing a high-numerical-aperture optical microscope, while the ion yield and energy distributions are obtained from a set of Faraday cups set up under various angles. We found a slight increase of the ion yield for an increasing pulse length, while the ablation depth is slightly decreasing. The ablation volume remained constant as a function of pulse length. The ablation depth follows a two-region logarithmic dependence on the fluence, in agreement with the available literature and theory. In the examined fluence range, the ion yield angular distribution is sharply peaked along the target normal at low fluences but rapidly broadens with increasing fluence. The total ionization fraction increases monotonically with fluence to a 5-6% maximum, which is substantially lower than the typical ionization fractions obtained with nanosecond-pulse ablation. The angular distribution of the ions does not depend on the laser pulse length within the measurement uncertainty. These results are of particular interest for the possible utilization of fs-ps laser systems in plasma sources of extreme ultraviolet light for nanolithography.Comment: 8 pages, 7 figure

    Solar Wind Abundances of C and O

    Get PDF
    Quantitative understanding of solar wind (SW) elemental fractionation is required to improve knowledge of the solar nebula abundances from Genesis samples, in particular abundances of volatile elements, depleted in CI chondrites. Ratios of elements with low and high first ionization potential (FIP) in the solar wind, e.g., Fe/He, are higher than photospheric abundances. C, O, and N have intermediate FIP and are thus critical as to whether this fractionation is stepwise or gradual as a function of FIP

    Visualizing the Coupling between Red and Blue Stark States Using Photoionization Microscopy

    Get PDF
    In nonhydrogenic atoms in a dc electric field, the finite size of the ionic core introduces a coupling between quasibound Stark states that leads to avoided crossings between states that would otherwise cross. Near an avoided crossing, the interacting states may have decay amplitudes that cancel each other, decoupling one of the states from the ionization continuum. This well- known interference narrowing effect, observed as a strongly electric field- dependent decrease in the ionization rate, was previously observed in several atoms. Here we use photoionization microscopy to visualize interference narrowing in helium atoms, thereby explicitly revealing the mechanism by which Stark states decay. The interference narrowing allows measurements of the nodal patterns of red Stark states, which are otherwise not observable due to their intrinsic short lifetime

    Particle transport in evolving protoplanetary disks: Implications for results from Stardust

    Full text link
    Samples returned from comet 81P/Wild 2 by Stardust confirm that substantial quantities of crystalline silicates were incorporated into the comet at formation. We investigate the constraints that this observation places upon protoplanetary disk physics, assuming that outward transport of particles processed at high temperatures occurs via advection and turbulent diffusion in an evolving disk. We also look for constraints on particle formation locations. Our results are based upon 1D disk models that evolve with time under the action of viscosity and photoevaporation, and track solid transport using an ensemble of individual particle trajectories. We find that two classes of disk model are consistent with the Stardust findings. One class features a high particle diffusivity (a Schmidt number Sc < 1), which suffices to diffuse particles up to 20 microns in size outward against the mean gas flow. For Sc > 1, such models are unlikely to be viable, and significant outward transport requires that the particles of interest settle into a midplane layer that experiences an outward gas flow. In either class of models, the mass of inner disk material that reaches the outer disk is a strong function of the disk's initial compactness. Hence, models of grain transport within steady-state disks underestimate the efficiency of outward transport. Neither model results in sustained outward transport of very large particles exceeding a mm in size. We show that the transport efficiency generally falls off rapidly with time. Hence, high-temperature material must be rapidly incorporated into icy bodies to avoid fallback, and significant radial transport may only occur during the initial phase of rapid disk evolution. It may also vary substantially between disks depending upon their initial mass distributions. We discuss implications for Spitzer observations of crystalline silicates in T Tauri disks.Comment: ApJ, in pres

    Sn ion energy distributions of ns- and ps-laser produced plasmas

    Get PDF
    Ion energy distributions arising from laser-produced plasmas of Sn are measured over a wide laser parameter space. Planar-solid and liquid-droplet targets are exposed to infrared laser pulses with energy densities between 1 J cm(-2) and 4 kJ cm(-2) and durations spanning 0.5 ps to 6 ns. The measured ion energy distributions are compared to two self-similar solutions of a hydrodynamic approach assuming isothermal expansion of the plasma plume into vacuum. For planar and droplet targets exposed to ps-long pulses, we find good agreement between the experimental results and the self-similar solution of a semi-infinite simple planar plasma configuration with an exponential density profile. The ion energy distributions resulting from solid Sn exposed to ns-pulses agrees with solutions of a limited-mass model that assumes a Gaussian-shaped initial density profile.</p

    Abrupt GaP/Si hetero-interface using bistepped Si buffer

    Get PDF
    We evidence the influence of the quality of the starting Si surface on the III-V/Si interface abruptness and on the formation of defects during the growth of III-V/Si heterogeneous crystal, using high resolution transmission electron microscopy and scanning transmission electron microscopy. GaP layers were grown by molecular beam epitaxy on vicinal Si (001). The strong effect of the Si substrate chemical preparation is first demonstrated by studying structural properties of both Si homoepitaxial layer and GaP/Si heterostructure. It is then shown that choosing adequate chemical preparation conditions and subsequent III-V regrowth conditions enables the quasi-suppression of micro-twins in the epilayer. Finally, the abruptness of GaP/Si interface is found to be very sensitive to the Si chemical preparation and is improved by the use of a bistepped Si buffer prior to III-V overgrowth

    “Dogged” Search of Fresh Nakhla Surfaces Reveals New Alteration Textures

    Get PDF
    Special Issue: 74th Annual Meeting of the Meteoritical Society, August 8-12, 2011, London, U.K.International audienceCarbonaceous chondrites are considered as amongst the most primitive Solar System samples available. One of their primitive characteristics is their enrichment in volatile elements.This includes hydrogen, which is present in hydrated and hydroxylated minerals. More precisely, the mineralogy is expected to be dominated by phyllosilicates in the case of CM chondrites, and by Montmorillonite type clays in the case of CI. Here, in order to characterize and quantify the abundance of lowtemperature minerals in carbonaceous chondrites, we performed thermogravimetric analysis of matrix fragments of Tagish Lake, Murchison and Orgueil

    Direct measurement of local constitutive relations, at the micrometre scale, in bulk metallic alloys

    Get PDF
    Multiscale models involving crystal plasticity are essential to predict the elastoplastic behavior of structural materials with respect to their microstructure. However, those models are often limited by a poor knowledge of the local constitutive behavior. This article reports a method to measure the mechanical behavior directly, at the micrometre scale, in bulk crystalline materials. Local strain and stress states were evaluated at the surface of a bent stainless steel crystal by combining total strain measurements – performed with the digital image correlation technique on optical images – with elastic strain measurements obtained by Laue microdiffraction. A local constitutive relation was measured, in an efficient nondestructive way, without the need for full-field simulations. The method was validated by a comparison between the measured local behavior and the macroscopic behavior of the single crystal
    • 

    corecore