2,239 research outputs found

    TRMM Version 7 Level 3 Gridded Monthly Accumulations of GPROF Precipitation Retrievals

    Get PDF
    In July 2011, improved versions of the retrieval algorithms were approved for TRMM. All data starting with June 2011 are produced only with the version 7 code. At the same time, version 7 reprocessing of all TRMM mission data was started. By the end of August 2011, the 14+ years of the reprocessed mission data became available online to users. This reprocessing provided the opportunity to redo and enhance upon an analysis of V7 impacts on L3 data accumulations that was presented at the 2010 EGU General Assembly. This paper will discuss the impact of algorithm changes made in th GPROF retrieval on the Level 2 swath products. Perhaps the most important change in that retrieval was to replacement of a model based a priori database with one created from Precipitation Radar (PR) and TMI brightness temperature (Tb) data. The radar pays a major role in the V7 GPROF (GPROF2010) in determining existence of rain. The level 2 retrieval algorithm also introduced a field providing the probability of rain. This combined use of the PR has some impact on the retrievals and created areas, particularly over ocean, where many areas of low-probability precipitation are retrieved whereas in version 6, these areas contained zero rain rates. This paper will discuss how these impacts get translated to the space/time averaged monthly products that use the GPROF retrievals. The level 3 products discussed are the gridded text product 3G68 and the standard 3A12 and 3B31 products. The paper provides an overview of the changes and explanation of how the level 3 products dealt with the change in the retrieval approach. Using the .25 deg x .25 degree grid, the paper will show that agreement between the swath product and the level 3 remains very high. It will also present comparisons of V6 and V7 GPROF retrievals as seen both at the swath level and the level 3 time/space gridded accumulations. It will show that the various L3 products based on GPROF level 2 retrievals are in close agreement. The paper concludes by outlining some of the challenges of the TRMM version 7 level 3 products

    Transient Flow Routing in Channel Networks

    Get PDF
    The formulation of a mathematical model to predict transient flows in hydraulic networks is presented. The network formulation consists of breaking the network into a series of connected reaches; reducing the finite difference equations for each reach into two "reach" equations; forming an exterior matrix consisting of the reach equations, external boundary conditions, and interior compatibility conditions; solving the external matrix for the end values of discharge and water surface elevation for all reaches and back-substituting for all interior values. Examples presented include the James River, USA, estuary model (twenty-four nodes and twenty-six reaches), the Cork Harbour, Ireland, estuary (thirteen-reach, double-looped network), and the Rio Bayamon basin, Puerto Rico. Results are very satisfactory when compared to known data

    Thermo-mechanical behavior of surface acoustic waves in ordered arrays of nanodisks studied by near infrared pump-probe diffraction experiments

    Full text link
    The ultrafast thermal and mechanical dynamics of a two-dimensional lattice of metallic nano-disks has been studied by near infrared pump-probe diffraction measurements, over a temporal range spanning from 100 fs to several nanoseconds. The experiments demonstrate that, in these systems, a two-dimensional surface acoustic wave (2DSAW), with a wavevector given by the reciprocal periodicity of the array, can be excited by ~120 fs Ti:sapphire laser pulses. In order to clarify the interaction between the nanodisks and the substrate, numerical calculations of the elastic eigenmodes and simulations of the thermodynamics of the system are developed through finite-element analysis. At this light, we unambiguously show that the observed 2DSAW velocity shift originates from the mechanical interaction between the 2DSAWs and the nano-disks, while the correlated 2DSAW damping is due to the energy radiation into the substrate.Comment: 13 pages, 10 figure

    Global warming will affect the maximum potential abundance of boreal plant species

    Get PDF
    Forecasting the impact of future global warming on biodiversity requires understanding how temperature limits the distribution of species. Here we rely on Liebig's Law of Minimum to estimate the effect of temperature on the maximum potential abundance that a species can attain at a certain location. We develop 95%‐quantile regressions to model the influence of effective temperature sum on the maximum potential abundance of 25 common understory plant species of Finland, along 868 nationwide plots sampled in 1985. Fifteen of these species showed a significant response to temperature sum that was consistent in temperature‐only models and in all‐predictors models, which also included cumulative precipitation, soil texture, soil fertility, tree species and stand maturity as predictors. For species with significant and consistent responses to temperature, we forecasted potential shifts in abundance for the period 2041–2070 under the IPCC A1B emission scenario using temperature‐only models. We predict major potential changes in abundance and average northward distribution shifts of 6–8 km yr−1. Our results emphasize inter‐specific differences in the impact of global warming on the understory layer of boreal forests. Species in all functional groups from dwarf shrubs, herbs and grasses to bryophytes and lichens showed significant responses to temperature, while temperature did not limit the abundance of 10 species. We discuss the interest of modelling the ‘maximum potential abundance’ to deal with the uncertainty in the predictions of realized abundances associated to the effect of environmental factors not accounted for and to dispersal limitations of species, among others. We believe this concept has a promising and unexplored potential to forecast the impact of specific drivers of global change under future scenarios.202

    Destabilization of the thermohaline circulation by transient perturbations to the hydrological cycle

    Full text link
    We reconsider the problem of the stability of the thermohaline circulation as described by a two-dimensional Boussinesq model with mixed boundary conditions. We determine how the stability properties of the system depend on the intensity of the hydrological cycle. We define a two-dimensional parameters' space descriptive of the hydrology of the system and determine, by considering suitable quasi-static perturbations, a bounded region where multiple equilibria of the system are realized. We then focus on how the response of the system to finite-amplitude surface freshwater forcings depends on their rate of increase. We show that it is possible to define a robust separation between slow and fast regimes of forcing. Such separation is obtained by singling out an estimate of the critical growth rate for the anomalous forcing, which can be related to the characteristic advective time scale of the system.Comment: 37 pages, 8 figures, submitted to Clim. Dy

    Yprel networks, classification and incremental learning

    Get PDF
    This paperpresents a neural network methodology called « yprel networks ». After relating the main characteristics of the approach, we shall detail the incremental learning methodology used to improve the performances, which is based on the relearning phases from the classification errors . The results obtained on a characters recognition problem are then discussed .L'article présente un type de réseaux neuro-mimétiques appelé «réseaux d'yprels ». Après avoir rappelé quelques caractéristiques essentielles de ces réseaux, on précise la méthode d'apprentissage incrémental permettant d'améliorer les performances par reprise des erreurs de classification. Les résultats obtenus pour un problème de reconnaissance de caractères sont alors présentés

    A Comment on Conical Flow Induced by Heavy-Quark Jets

    Full text link
    The suppression of high transverse momentum particles, recently discovered at RHIC, is commonly interpreted as due to parton energy loss. In high energy nuclear collisions, QCD jets would deposit a large fraction of their energy and into the produced matter. The question of how this energy is degraded and whether we can use this phenomenon to probe the properties of the produced matter is now under active discussion. It has been proposed that if this matter, which is now being referred to as a {\em strongly coupled Quark-Gluon Plasma} (sQGP), may behave as a liquid with a very small viscosity. In this case, a very specific collective excitation should be produced, called the ``conical flow'', similar e.g. to the sonic booms generated by the shock waves produced by supersonic planes. The RHIC experiments seem indeed to be obtaining some indication that the production of particles emitted opposite to a high-ptp_t jet may actually be peaked away from the quenched jet direction, at an angle roughly consistent with the direction expected in case a shock wave is produced (i.e. orthogonal to the Mach cone). In this note we speculate that for tagged heavy-quark jets one may observe a shrinkage of the Mach cone at moderate ptp_t. The experimental observation of such an effect would be a very good test for the validity of the whole picture currently emerging from the study of partonic matter in nuclear collisions

    Model of end stage liver disease (MELD) score greater than 23 predicts length of stay in the ICU but not mortality in liver transplant recipients

    Get PDF
    INTRODUCTION: The impact of model of end stage liver disease (MELD) score on postoperative morbidity and mortality is still elusive, especially for high MELD. There are reports of poorer patient outcome in transplant candidates with high MELD score, others though report no influence of MELD score on outcome and survival. METHODS: We retrospectively analyzed data of 144 consecutive liver transplant recipients over a 72-month period in our transplant unit, from January 2003 until December 2008 and performed uni- and multivariate analysis for morbidity and mortality, in particular to define the influence of MELD to these parameters. RESULTS: This study identified MELD score greater than 23 as an independent risk factor of morbidity represented by intensive care unit (ICU) stay longer than 10 days (odds ratio 7.0) but in contrast had no negative impact on mortality. Furthermore, we identified transfusion of more than 7 units of red blood cells as independent risk factor for mortality (hazard ratio 7.6) and for prolonged ICU stay (odds ratio [OR] 7.8) together with transfusion of more than 10 units of fresh frozen plasma (OR 11.6). Postoperative renal failure is a strong predictor of morbidity (OR 7.9) and postoperative renal replacement therapy was highly associated with increased mortality (hazard ratio 6.8), as was hepato renal syndrome prior to transplantation (hazard ratio 13.2). CONCLUSIONS: This study identified MELD score greater than 23 as an independent risk factor of morbidity represented by ICU stay longer than 10 days but in contrast had no negative impact on mortality. This finding supports the transplantation of patients with high MELD score but only with knowledge of increased morbidity

    The carbon cycle in Mexico: past, present and future of C stocks and fluxes

    Get PDF
    PublishedThe Supplement related to this article is available online at doi:10.5194/bg-13-223-2016-supplement.We modeled the carbon (C) cycle in Mexico with a process-based approach. We used different available products (satellite data, field measurements, models and flux towers) to estimate C stocks and fluxes in the country at three different time frames: present (defined as the period 2000–2005), the past century (1901–2000) and the remainder of this century (2010–2100). Our estimate of the gross primary productivity (GPP) for the country was 2137 ± 1023 TgC yr−1 and a total C stock of 34 506 ± 7483 TgC, with 20 347 ± 4622 TgC in vegetation and 14 159 ± 3861 in the soil. Contrary to other current estimates for recent decades, our results showed that Mexico was a C sink over the period 1990–2009 (+31 TgC yr−1) and that C accumulation over the last century amounted to 1210 ± 1040 TgC. We attributed this sink to the CO2 fertilization effect on GPP, which led to an increase of 3408 ± 1060 TgC, while both climate and land use reduced the country C stocks by −458 ± 1001 and −1740 ± 878 TgC, respectively. Under different future scenarios, the C sink will likely continue over the 21st century, with decreasing C uptake as the climate forcing becomes more extreme. Our work provides valuable insights on relevant driving processes of the C cycle such as the role of drought in drylands (e.g., grasslands and shrublands) and the impact of climate change on the mean residence time of soil C in tropical ecosystems.The lead author (G. Murray-Tortarolo) thanks CONACYT-CECTI, the University of Exeter and Secretaría de Educación Pública (SEP) for their funding of this project. The authors extend their thanks to Carlos Ortiz Solorio and to the Colegio de Posgraduados for the field soil data and to the Alianza Redd+ Mexico for the field biomass data. This project would not have been possible without the valuable data from the CMIP5 models. A. Arneth, G. Murray-Tortarolo, A. Wiltshire and S. Sitch acknowledge the support of the European Commission-funded project LULCC4C (grant no. 603542). A. Wiltshire was partsupported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101)

    Projected drought risk in 1.5°C and 2°C warmer climates

    Get PDF
    The large socioeconomic costs of droughts make them a crucial target for impact assessments of climate change scenarios. Using multiple drought metrics and a set of simulations with the Community Earth System Model targeting 1.5°C and 2°C above preindustrial global mean temperatures, we investigate changes in aridity and the risk of consecutive drought years. If warming is limited to 2°C, these simulations suggest little change in drought risk for the U.S. Southwest and Central Plains compared to present day. In the Mediterranean and central Europe, however, drought risk increases significantly for both 1.5°C and 2°C warming targets, and the additional 0.5°C of the 2°C climate leads to significantly higher drought risk. Our study suggests that limiting anthropogenic warming to 1.5°C rather than 2°C, as aspired to by the Paris Climate Agreement, may have benefits for future drought risk but that such benefits may be regional and in some cases highly uncertain
    corecore