490 research outputs found

    Neutron Scattering and Its Application to Strongly Correlated Systems

    Full text link
    Neutron scattering is a powerful probe of strongly correlated systems. It can directly detect common phenomena such as magnetic order, and can be used to determine the coupling between magnetic moments through measurements of the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse scattering and dynamic correlations. Neutrons are also sensitive to the arrangement of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter, we provide an introduction to neutrons and neutron sources. The neutron scattering cross section is described and formulas are given for nuclear diffraction, phonon scattering, magnetic diffraction, and magnon scattering. As an experimental example, we describe measurements of antiferromagnetic order, spin dynamics, and their evolution in the La(2-x)Ba(x)CuO(4) family of high-temperature superconductors.Comment: 31 pages, chapter for "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancin

    Artificial Neural Network Inference (ANNI): A Study on Gene-Gene Interaction for Biomarkers in Childhood Sarcomas

    Get PDF
    Objective: To model the potential interaction between previously identified biomarkers in children sarcomas using artificial neural network inference (ANNI). Method: To concisely demonstrate the biological interactions between correlated genes in an interaction network map, only 2 types of sarcomas in the children small round blue cell tumors (SRBCTs) dataset are discussed in this paper. A backpropagation neural network was used to model the potential interaction between genes. The prediction weights and signal directions were used to model the strengths of the interaction signals and the direction of the interaction link between genes. The ANN model was validated using Monte Carlo cross-validation to minimize the risk of over-fitting and to optimize generalization ability of the model. Results: Strong connection links on certain genes (TNNT1 and FNDC5 in rhabdomyosarcoma (RMS); FCGRT and OLFM1 in Ewing’s sarcoma (EWS)) suggested their potency as central hubs in the interconnection of genes with different functionalities. The results showed that the RMS patients in this dataset are likely to be congenital and at low risk of cardiomyopathy development. The EWS patients are likely to be complicated by EWS-FLI fusion and deficiency in various signaling pathways, including Wnt, Fas/Rho and intracellular oxygen. Conclusions: The ANN network inference approach and the examination of identified genes in the published literature within the context of the disease highlights the substantial influence of certain genes in sarcomas

    System size dependence of strange particle yields and spectra at sqrt(s)=17.3 GeV

    Get PDF
    Yields and spectra of strange hadrons (K+, K-, phi, Lambda and Antilambda) as well as of charged pions were measured in near central C+C and Si+Si collisions at 158 AGeV beam energy with the NA49 detector. Together with earlier data for p+p, S+S and Pb+Pb reactions the system size dependence can be studied. Relative strangeness production rises fast and saturates at about 60 participating nucleons; the net hyperon spectra show an increasing shift towards midrapidity for larger colliding nuclei. An interpretation based on the formation of coherent systems of increasing volume is proposed. The transverse mass spectra can be described by a blast wave ansatz. Increasing flow velocity is accompanied by decreasing temperatures for both kinetic and chemical freeze out. The increasing gap between inelastic and elastic decoupling leaves space for rescattering.Comment: 8 pages, 6 figures, Proceedings of the Hot Quarks 2004 worksho

    Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth

    Get PDF
    Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations

    Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon

    Get PDF
    The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse momentum spectra of negatively charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and central nucleus-nucleus collisions. The mean transverse momentum is almost constant in the vicinity of midrapidity and shows little variation with the target and projectile masses. The average number of produced negatively charged hadrons per participant baryon increases slightly from p+p, p+A to central S+S,Ag collisions.Comment: 47 pages, submitted to Z. Phys.

    Further investigation of confirmed urinary tract infection (UTI) in children under five years: a systematic review.

    Get PDF
    Background: Further investigation of confirmed UTI in children aims to prevent renal scarring and future complications. Methods: We conducted a systematic review to determine the most effective approach to the further investigation of confirmed urinary tract infection (UTI) in children under five years of age. Results: 73 studies were included. Many studies had methodological limitations or were poorly reported. Effectiveness of further investigations: One study found that routine imaging did not lead to a reduction in recurrent UTIs or renal scarring. Diagnostic accuracy: The studies do not support the use of less invasive tests such as ultrasound as an alternative to renal scintigraphy, either to rule out infection of the upper urinary tract (LR- = 0.57, 95%CI: 0.47, 0.68) and thus to exclude patients from further investigation or to detect renal scarring (LR+ = 3.5, 95% CI: 2.5, 4.8). None of the tests investigated can accurately predict the development of renal scarring. The available evidence supports the consideration of contrast-enhanced ultrasound techniques for detecting vesico-ureteric reflux (VUR), as an alternative to micturating cystourethrography (MCUG) (LR+ = 14.1, 95% CI: 9.5, 20.8; LR- = 0.20, 95%CI: 0.13, 0.29); these techniques have the advantage of not requiring exposure to ionising radiation. Conclusion: There is no evidence to support the clinical effectiveness of routine investigation of children with confirmed UTI. Primary research on the effectiveness, in terms of improved patient outcome, of testing at all stages in the investigation of confirmed urinary tract infection is urgently required

    Promoter methylation of CDKN2A and lack of p16 expression characterize patients with hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The product of CDKN2A, p16 is an essential regulator of the cell cycle controlling the entry into the S-phase. Herein, we evaluated CDKN2A promoter methylation and p16 protein expression for the differentiation of hepatocellular carcinoma (HCC) from other liver tumors.</p> <p>Methods</p> <p>Tumor and corresponding non-tumor liver tissue samples were obtained from 85 patients with liver tumors. CDKN2A promoter methylation was studied using MethyLight technique and methylation-specific PCR (MSP). In the MethyLight analysis, samples with ≥ 4% of PMR (percentage of methylated reference) were regarded as hypermethylated. p16 expression was evaluated by immunohistochemistry in tissue sections (n = 148) obtained from 81 patients using an immunoreactivity score (IRS) ranging from 0 (no expression) to 6 (strong expression).</p> <p>Results</p> <p>Hypermethylation of the CDKN2A promoter was found in 23 HCCs (69.7%; mean PMR = 42.34 ± 27.8%), six (20.7%; mean PMR = 31.85 ± 18%) liver metastases and in the extralesional tissue of only one patient. Using MSP, 32% of the non-tumor (n = 85), 70% of the HCCs, 40% of the CCCs and 24% of the liver metastases were hypermethylated. Correspondingly, nuclear p16 expression was found immunohistochemically in five (10.9%, mean IRS = 0.5) HCCs, 23 (92%; mean IRS = 4.9) metastases and only occasionally in hepatocytes of non-lesional liver tissues (mean IRS = 1.2). The difference of CDKN2A-methylation and p16 protein expression between HCCs and liver metastases was statistically significant (p < 0.01, respectively).</p> <p>Conclusion</p> <p>Promoter methylation of CDKN2A gene and lack of p16 expression characterize patients with HCC.</p

    Azimuthal anisotropy and correlations at large transverse momenta in p+pp+p and Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV

    Get PDF
    Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+pp+p at the same energy. Elliptic anisotropy, v2v_2, is found to reach its maximum at pt3p_t \sim 3 GeV/c, then decrease slowly and remain significant up to pt7p_t\approx 7 -- 10 GeV/c. Stronger suppression is found in the back-to-back high-ptp_t particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of v2v_2 at intermediate ptp_t is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004

    Azimuthal anisotropy in Au+Au collisions at sqrtsNN = 200 GeV

    Get PDF
    The results from the STAR Collaboration on directed flow (v_1), elliptic flow (v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v_2, scaling with the number of constituent quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and quark coalescence is discussed.Comment: 26 pages. As accepted by Phys. Rev. C. Text rearranged, figures modified, but data the same. However, in Fig. 35 the hydro calculations are corrected in this version. The data tables are available at http://www.star.bnl.gov/central/publications/ by searching for "flow" and then this pape
    corecore