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Abstract

This paper derives optimal forecast combinations based on stochastic dominance e¢ -

ciency (SDE) analysis with di¤erential forecast weights for di¤erent quantiles of forecast

error distribution. For the optimal forecast combination, SDE will minimize the cumulat-

ive density functions (cdf�s) of the levels of loss at di¤erent quantiles of the forecast error

distribution by combining di¤erent time-series model-based forecasts. Using two exchange

rate series on weekly data for the Japanese Yen/U.S. Dollar and U.S. Dollar/Great Britain

Pound, we �nd that the optimal forecast combinations with SDE weights perform better

than di¤erent forecast selection and combination methods for the majority of the cases at

di¤erent quantiles of the error distribution. However, there are also some very few cases

where some other forecast selection and combination model performs equally well at some

quantiles of the forecast error distribution. Di¤erent forecasting period and quadratic loss

function are used to obtain optimal forecast combinations, and results are robust to these

choices. The out-of-sample performance of the SDE forecast combinations is also better

than that of the other forecast selection and combination models we considered.
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1 Introduction

Since the seminal work of Bates and Granger (1969), combining the forecasts of di¤erent models,

rather than relying on the forecasts of individual models, has come to be viewed as an e¤ective

way to improve the accuracy of predictions regarding a certain target variable. A signi�cant

number of theoretical and empirical studies, e.g., Timmermann (2006) and Stock and Watson

(2004), have been able to demonstrate the superiority of combined forecasts over single-model-

based predictions.

In this context, the central question is to determine the optimal weights used in the calcula-

tion of combined forecasts. In combined forecasts, the weights attributed to each model depend

on the model�s out of sample performance. Over time, the forecast errors used for the calculation

of optimal weights change; thus, the weights themselves vary over time. However, in empirical

applications, numerous papers (Clemen, 1989; Stock and Watson, 1999a, 1999b, 2004; Hendry

and Clements, 2004; Smith and Wallis, 2009; Huang and Lee, 2010; Aiol� et al., 2011; Geweke

and Amisano, 2012) have found that equally weighted forecast combinations often outperform

or perform almost as well as estimated optimal forecast combinations. This �nding is frequently

referred as the �forecast combination puzzle�by Stock and Watson (2004) because the e¢ ciency

cost of estimating the additional parameters of an optimal combination exceeds the variance re-

duction gained by deviating from equal weights.1 Overall, even though di¤erent optimal forecast

combination weights are derived for static, dynamic, or time-varying situations, most empirical

�ndings suggest that the simple average forecast combination outperforms forecast combinations

with more sophisticated weighting schemes.

In this paper, we will follow an approach for the combination of forecasts based on stochastic

dominance (SD) analysis, and we test whether a simple average combination of forecasts would

outperform forecast combinations with more elaborate weights. In this context, we will examine

whether an equally weighted forecast combination is optimal when we analyze the forecast error

distribution. Rather than assigning arbitrary equal weights to each forecast, we use stochastic

dominance e¢ ciency (SDE) analysis to propose a weighting scheme that dominates the equally

weighted forecast combination.

Typically, SD comparisons are conducted in a pair-wise manner. Barrett and Donald (2003)

developed pair-wise SD comparisons that relied on Kolmogorov-Smirnov type tests developed

within a consistent testing environment. This o¤ers a generalization of Beach and Davidson

(1983), Anderson (1996), Davidson and Duclos (2000), who examined second-order SD using

tests that rely on pair-wise comparisons made at a �xed number of arbitrarily chosen points,

an undesirable feature that may lead to a test inconsistency. Linton et al. (2005) propose

a subsampling method that can address both dependent samples and dependent observations

1Smith and Wallis (2009) found that the �nite sample error is the reason behind the forecast com-
bination puzzle. Aiol� et al. (2011) suggested that potential improvements can be made by using a
simple equal-weighted average of forecasts from various time-series models and survey forecasts. See also
Diebold and Pauly (1987), Clements and Hendry (1998, 1999, 2006), and Timmermann (2006) for a dis-
cussion of model instability and Elliot and Timmermann (2005) forecast combinations for time-varying
data.
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within samples. This is appropriate for conducting SD analysis for model selection among many

forecasts. In this context, comparisons are available for pairs for which one can compare one

forecast with another forecast and conclude whether one forecast dominates the other. Hence,

one can �nd the best individual model by comparing all forecasts. In this case, the dominant

model (optimal one) will always produce a distribution of forecast errors that is lower than

the distribution of forecast errors obtained from another forecast model. Pair-wise dominance

would suggest that the optimal model will always produce a lower number of errors above all

given error levels than any other model. Lately, multi-variate (multidimensional) comparisons

have become more popular. Multivariate SD comparisons in the �nance literature led to the

development of SD e¢ ciency testing methodologies �rst discussed by Fishburn (1977). In line

with Fishburn (1977), Post (2003) provided a SD e¢ ciency testing approach to test market

e¢ ciency by allowing full weight diversi�cation across di¤erent assets. Recently, Scaillet and

Topaloglou (2010), ST hereafter, used SD e¢ ciency tests that can compare a given portfolio with

an optimally diversi�ed portfolio constructed from a set of assets.2 The recent testing literature

in �nance examines whether a given weighted combination of assets dominates the market at

all return levels. In this paper, we adapt the SDE methodology into a forecasting setting to
obtain the optimal forecast combination. The main contribution of the paper is the derivation

of an optimal forecast combination based on SDE analysis with di¤erential forecast weights.

For the optimal forecast combination, this forecast combination will minimize the number of

forecast errors that surpass a given threshold level of loss. In other words, we will examine the

forecast error distribution of the average forecast combination at di¤erent parts of the empirical

distribution and test whether the average forecast combination is optimal at di¤erent sections

of the forecast error distribution. Furthermore, we investigate whether there is an alternative

forecast combination that can o¤er an optimal forecast combination at some parts of the forecast

error distribution.

The mainstream forecast combination literature obtains the forecast combination weights

through the minimization of the total sum of the squared forecast errors (or the mean squared

forecast errors) taking into account all the forecasts over the whole period. For instance, the

seminal paper of Granger and Ramanathan (1984) employs ordinary least squares (minimizing

the sum of squared errors) to obtain optimal weights for the point forecasts of individual models.

The forecast combination literature also consists of methods that analyze the optimal forecast

combinations based on quantiles of the forecasts (see e.g., Taylor and Bunn, 1998; Giacomini

and Komunjer, 2005; Clements et al. 2008; Gerlach et al., 2011). In that context for example,

Giacomini and Komunjer (2005) obtain forecast weights based on a generalized methods of mo-

ments (GMM) estimation approach conditional on quantile forecasts. In a standard quantile

2 In a related paper, Pinar et al. (2013) used a similar approach to construct an optimal Human
Development Index (HDI). See also Pinar et al. (2015) for optimal HDI for MENA region, Pinar
(2015) for optimal governance indices, and Agliardi et al. (2015) for environmental index. The same
methodology was applied in Agliardi et al. (2012), where an optimal country risk index was constructed
following SD analysis with di¤erential component weights, yielding an optimal hybrid index for economic,
political, and �nancial risk indices that do not rely on arbitrary weights as rating institutions do (see
also Agliardi et al., 2014 for Eurozone case).
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regression setting, when the quadratic loss function is replaced with the absolute loss function,

individual point forecasts are used to minimize the absolute forecast errors for a given quantile

level (Koenker, 2005). In that case if the absolute forecast errors are considered from the whole

distribution, this leads to a quantile regression for the median (see e.g., Nowotarski et al., 2014).

Our approach di¤ers from the above-mentioned mainstream forecast combinations and it is com-

plementary to them. In particular, methods that minimize the sum of the squared forecast errors

�nd forecast combinations that work well at the center of the distribution. However, di¤erent

forecast combinations might work better at di¤erent areas of the empirical distribution of the

forecast errors if the loss function or forecast error distribution is skewed (see, e.g., Elliott and

Timmermann, 2004). Similarly, quantile regressions minimize the absolute forecast errors (or

mean absolute forecast errors) based on given quantile forecasts. This objective function (similar

to that of sum of squared forecast errors) is set to minimize a single measure, such as the mean

absolute forecast errors up to a given quantile, however, it ignores how the absolute forecast

errors are distributed up to the given quantile. In this context, our paper analyzes the entire

forecast error distribution, which takes into account all moments. Rather than relying on single

optimal forecast combinations, we derive the optimal forecast combinations at di¤erent parts of

the empirical forecast error distribution. In other words, rather than choosing the one forecast

combination that minimizes the mean squared forecast errors (or mean absolute forecast errors),

we derive di¤erent combinations that will maximize the cumulative distribution function (cdf) of

forecast errors up to a given threshold level. In this respect, SDE method does not provide the

lowest mean absolute forecast error at a given quantile, however, it provides the lowest number

of forecast errors above a given threshold level.

In order to better understand the distinction between the two approaches, one relying on

minimizing the number of forecast errors above a given threshold and the other minimizing the

overall squared forecast errors (or absolute forecast errors) for a given quantile, we provide a

brief discussion on how SDE methodology complements the mainstream forecast combinations.

Forecasters and investors follow a certain strategy and depending on their risk attitudes they try

to minimize their losses or forecast errors. Some might consider to minimize the forecast errors

for all possible forecast levels and as such they minimize the total sum of (squared) forecast errors

(e.g., MSFE). Others might want to try to minimize the forecast errors for a given quantile of

forecasts (quantile regression). On the other hand, there may be a forecaster (like an insurance

company) who compensates above a given threshold level of loss. In that case the company in

question would o¤er a guarantee to compensate their customers if their forecast error (loss) is

above a given level. Hence, this company would like to minimize the forecast errors (losses) that

are above this threshold so that to minimize its compensation levels, something that may not be

achieved by minimizing the total sum of squared forecast errors (or the absolute forecast errors

for this quantile). The latter methods will minimize the overall loss (or quantile loss), but the

number of losses above a given threshold level might not be the lowest as derived by the SDE

approach. In that context, the SDE methodology is designed to combine forecasts that minimizes

the number of forecast errors above a given threshold and this is obtained by maximizing the

empirical cumulative distance between the loss generated by the equally-weighted forecasts and
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the alternative one for this threshold loss level. Therefore, the SDE method produces a forecast

combination that complements the more conventional forecast selection and combination methods

and can serve forecasters and investors to obtain better forecast combinations depending on their

strategy and policy.

We use two exchange rate series given in a weekly frequency for the Japanese Yen/U.S.

Dollar and U.S. Dollar/Great Britain Pound to derive optimal forecast combinations with the

SDE methodology for di¤erent forecasting periods (during and after the 2007/2009 �nancial

crisis) and for di¤erent forecast horizons. Overall, we �nd that the optimal forecast combinations

with SDE weights perform better than di¤erent forecast selection and combination methods

for the majority of the cases. However, there are also some very few cases where some other

forecast selection and combination model performs equally well at some parts of the forecast

error distribution. For the optimal forecast combination obtained with SDE weights, the best

forecasting model (i.e., the model that gets relatively more weight than other forecasting models)

includes di¤erent sets of models at di¤erent parts of the empirical distribution. On average,

autoregressive and self-exciting threshold autoregressive models are the main contributors to

the optimal forecast combination for both the Japanese Yen/U.S. Dollar and U.S. Dollar/Great

Britain Pound exchange rate application, and during and after the 2007/2009 �nancial crisis.

The remainder of the paper includes the following. In section 2, we de�ne the concept of SDE

and discuss the general hypothesis for SDE at any order. Section 3 describes the data, time-

series forecasting models and forecast methods used in our paper as well as alternative forecast

selection and combination methods. Section 4 presents the empirical analysis where we use the

SDE methodology to �nd the optimal forecast combination for the two exchange rate series for

di¤erent forecast periods with di¤erent forecast horizons and compare these �ndings with those

from the other forecast selection and combination methods. Section 5 o¤ers robustness analysis

and �nally, section 6 concludes.

2 Hypothesis, Test Statistics and Asymptotic Properties

Let us start with data fyt; t 2 Zg and the (m� 1) column vector of forecasts
�byt+h;t; t; h 2 Z	

for yt+h obtained from m di¤erent forecasting models generated at time t for the period of t+ h

(h � 1), where h is the forecast horizon and T is the �nal forecasting period. Furthermore, let
yt+h denote the actual values over the same forecast period.

The equally weighted column vector, � , is used to obtain the simple average of individual

forecasts derived from the m di¤erent models, i.e., byewt+h;t = �
0byt+h;t, where � is the (m� 1)

column vector with entries 1
m�s. Forecast errors with the equally weighted forecast combination

is obtained by "ewt+h;t = yt+h�byewt+h;t. Let us now consider an alternative weighting column vector
� 2 L, where L := f� 2 Rn+ : e

0
� = 1g with e being a vector of ones. With this alternative

weighting scheme, one can obtain a forecast combination, i.e., bywt+h;t = �
0byt+h;t. Similarly,

forecast errors with this alternative weighting scheme is obtained by "wt+h;t = yt+h � bywt+h;t.
For this paper, we follow a loss function that depends on the forecast error, i.e., L("t+h;t),

that has the following properties (Granger, 1999):
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i:L(0) = 0;

ii:min
e
L(") = 0; i.e., L(") � 0;

iii:L(") is monotonic non-decreasing as " moves away from 0:

i.e., L("1) � L("2) if "1 > "2 � 0 and if "1 < "2 � 0 .
(i) suggests that there is no loss when there is no error, (ii) suggests that the minimum loss

is zero, and �nally, (iii) suggests that the loss is determined by its distance to zero error irre-

spective of its sign.3 This loss function may have further assumptions, such as being symmetric,

homogenous, or di¤erentiable up to some order (see Granger, 1999, for the details). Hence, the

associated loss functions with the equally weighted forecast combination and forecast combina-

tion with alternative weighting scheme are L("ewt+h;t) (i.e., L(yt+h��
0byt+h;t)) and L("wt+h;t) (i.e.,

L(yt+h � �
0byt+h;t)) respectively.

Note that we can have di¤erent forecast errors depending on the di¤erent choices of weights

available to combine forecasts. The forecast combination literature employs various objective

functions derived from the loss function to obtain optimal weights to combine forecasts (see, e.g.,

Hyndman and Koehler, 2006, for an extensive list of accuracy measures). It is common in the

literature to use the norm of the loss function based on forecast errors to �nd the optimal weights

(see Timmermann, 2006).

In other words, the most common way of obtaining the optimal vector of combination weights,

��t+h;t, is given by solving the problem

��t+h;t = argmin
�

E
�
L("t+h;t(�t+h;t)) j byt+h;t� s:t: e

0
� = 1 (1)

where the expectation is taken over the conditional distribution of "t+h;t. Similarly the loss

function might be based on quadratic loss function (see, e.g., Elliott and Timmermann, 2004).

However, it is well known that all of the moments of the forecast error distribution will a¤ect

the combination of weights (see, e.g., Geweke and Amisano, 2011), and if one were to �nd the

optimal weights by analyzing the entire distribution of the errors, this would lead to a more

informative outcome. In this paper, SDE analysis allows for all moments to be considered as it

examines the entire forecast error distribution. For example, if one were to �nd weights by min-

imizing the mean squared forecast errors (MSFE) and the forecast distribution was asymmetric

with some important outliers, then the weighted forecast combination, which would have been

obtained as the solution, would have ignored these important features of the empirical distribu-

tion. In other words, under an MSFE loss function (i.e., quadratic loss function), the optimal

forecast combination is obtained by the optimal trade-o¤ between squared bias and the forecast

error variance (i.e., the optimal forecast combination only depends on the �rst two moments

of the forecast errors). However, if the forecast error distribution is skewed, di¤erent weighted

forecast combinations would work better at di¤erent parts of the empirical distribution of the

forecast errors (see, e.g., Elliott and Timmermann, 2004). Hence, looking at all of the moments

3 In this paper, loss function is based on the magnitude of the forecast errors. Hence, we take the absolute
values of negative errors and evaluate the errors based on their magnitude, that is the distance from zero error,
not the sign of errors.
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of the forecast error would result in more robust weighting schemes. In the case of asymmetric

loss and nonlinearities, optimal weights based on the general loss functions rely on �rst and

second moment of the forecast errors are not robust (see e.g., Patton and Timmermann, 2007).

In this paper, rather than the loss function that relies on only two moments, we analyze the

full empirical distribution of the loss which incorporates information beyond the �rst two mo-

ments. One could obtain optimal forecast combination for di¤erent sections of the distribution

rather than single forecast combination where the latter case might work well in some sections

of the loss distribution and worse in other parts. Whereas, in our case, one could obtain various

combinations which would work well for at di¤erent sections of the error distribution and one

could choose which combination to use. Our approach is also a nonparametric one that does

not rely on assumptions as its criteria do not impose explicit functional form requirements on

individual preferences or restrictions on the functional forms of probability distributions since we

are analyzing the full distribution of the loss (i.e., magnitude of the forecast error distribution).

In short, the quadratic loss function minimizes the sum of squared forecast errors (or mean

squared forecast errors) and the quantile regression minimizes the sum of absolute errors (or

mean absolute errors) for a given quantile. If one were to minimize the squared forecast errors

by looking at the whole distribution (or quantile), these approaches could be appropriate. On the

other hand, with the SDE methodology one minimizes the number of forecast errors (or squared

forecast errors) above a given threshold error level. In that respect, SDE approach complements

the existing forecast selection and/or combination methods when one�s priority is to minimize

the number of forecasts above a given threshold. For example, this could be the case, when

a company promises to compensate its consumers if their forecasts give errors that are above

a threshold error level. Standard approaches would minimize an overall single measure (mean

squared forecast error or mean absolute error for a given quantile). However, these objective

functions are not designed to minimize the number of errors above a given threshold error level

and might produce a higher number of losses above this given threshold. In this respect, SDE

o¤ers a complementary approach to forecast combination if the number of losses above a threshold

is deemed more important than the overall (or quantile) loss.

In this paper, we test whether the cumulative distribution function (cdf) of the loss function

with the equally weighted forecast combination is stochastically e¢ cient or not. F (L("ewt+h;t))

and F (L("wt+h;t)) are the continuous cdf of the L("
ew
t+h;t) and L("

w
t+h;t) with weights � (equal

weights) and � (alternative weights). Furthermore, G(z; � ;F ) and G(z;�;F ) the cdf�s of the

loss functions associated with the forecast combinations of �
0byt+h;t and �0byt+h;t at point z

given G(z; � ;F ) :=
Z
Rn
IfL("ewt+h;t) � zgdF (L("t+h;t)) and G(z;�;F ) :=

Z
Rn
IfL("wt+h;t) �

zgdF (L("t+h;t)) respectively, where z represents the level of loss4 and I represents the indicator
function (Davidson and Duclos, 2000).

For any two forecast combinations, we say that the forecast combination �
0byt+h;t dominates

4As suggested by the assumptions above, we concentrate on the magnitude of the forecast errors; and
therefore, z represents the monotonic non-decreasing distance to zero error. Throughout the paper, we
refer to z as �loss�level so this could be clearly identi�ed as magnitude of the forecast error rather than
forecast error itself.

7



the distribution of the equally weighted forecast combination �
0byt+h;t stochastically at �rst order

(SD1) if, for any point z of the loss distribution, G(z;�;F ) � G(z; � ;F ).5 In the context of our
analysis, if z denotes the loss level, then the inequality in the de�nition means that the proportion

of loss obtained with the forecast combination of �
0byt+h;t at point z is no lower than the value

(mass) of the cdf of the loss with the equally weighted forecast combination, �
0byt+h;t. In other

words, the proportion of loss generated with the forecast combination of �
0byt+h;t above a given z

level is less than the one with the equally weighted forecast combination, �
0byt+h;t. If the forecast

combination �
0byt+h;t dominates the equally weighted forecast combination � 0byt+h;t at the �rst

order, then �
0byt+h;t yields the optimal forecast combination for that given loss level, z.

More precisely, to achieve stochastic dominance, we maximize the following objective function:

Max
�
[G(z;�;F )�G(z; � ;F )] for a given z level

This maximization results in the optimal forecast combination, �
0byt+h;t, that can be con-

structed from the set of forecast models in the sense that it reaches the minimum number of loss

above a given loss level, z. In other words, �
0byt+h;t gives a combination that o¤ers the highest

number of forecast combinations that generates a loss that is below a given z level, and hence it

minimizes the number of forecasts that gives a loss above a given threshold, z.

The general hypotheses for testing whether the equally weighted forecast combination, �
0byt+h;t,

is the optimal forecast combination at the stochastic dominance e¢ ciency order of j, hereafter

SDEj , can be written compactly as:

Hj
0 :Jj(z;�;F ) � Jj(z; � ;F ) for given z 2 R and for all � 2 L;

Hj
1 :Jj(z;�;F ) > Jj(z; � ;F ) for given z 2 R or for some � 2 L:

where

Jj(z;�;F ) =
Z
Rn

1

(j � 1)! (z � L("
w
t+h;t))

j�1IfL("wt+h;t) � zgdF (L("t+h;t)) (2)

and J1(z;�;F ) := G(z;�;F ). Under the null hypothesis Hj
0 there is no distribution of loss

obtained from any alternative forecast combination �
0byt+h;t that dominates the loss distribution

that is obtained from the equally weighted forecast combination at given level of loss, z level

(i.e., a chosen quantile of loss level). In other words, under the null, we analyze whether the

equally-weighted forecast combination, �
0byt+h;t, is optimal at a given quantile of the loss dis-

tribution when compared to all possible combinations of forecasts , �
0byt+h;t . Whereas, under

the alternative hypothesis Hj
1 , we can construct a forecast combination �

0byt+h;t for which, for
given loss level of z (i.e., chosen quantile of loss level), the function Jj(z;�;F ) is greater than
the function Jj(z; � ;F ). Thus, j = 1; the equally weighted forecast combination �

0byt+h;t is
5 In general, combination with � will be considered as dominating one when G(z; � ;F ) lays below the

G(z; �;F ) when the dominant combination refers to a �best outcome�case because there is more mass to
the right of z such as in the case of income or return distribution. In the context of the present analysis,
because the distribution of outcomes refers to the loss with forecast errors, the �best outcome�case (i.e.,
dominant case) corresponds to a forecast combination with the largest loss above a given level z.
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stochastically dominated (i.e., does not yield the optimal forecast combination) at the �rst order

at a given quantile of loss function if some other forecast combination �
0byt+h;t dominates it at

a given quantile of loss level z. In other words, there is an alternative weighting scheme, �, such

that when forecasts are combined with these weights, �
0byt+h;t, yields a distribution of loss (i.e.,

distribution of forecast errors based on the loss function) that o¤ers a lower number of forecast

errors above the chosen z level when compared to average forecast combination.

We obtain SD at the �rst and second orders when j = 1 and j = 2, respectively. The

hypothesis for testing the SDE of order j of the distribution of the equally weighted forecast

combination �
0byt+h;t over the distribution of an alternative forecast combination �0byt+h;t takes

analogous forms but uses a single given �
0byt+h;t rather than several of them.

The empirical counterpart of (2) is simply obtained by integrating with respect to the empir-

ical distribution F̂ of F , which yields the following:

Jj(z;�; F̂ ) =
1

Nf

NfX
Nf=1

1

(j � 1)! (z � L("
w
t+h;t))

j�1IfL("wt+h;t) � zg (3)

where Nf is the number of factor of realizations.6 In other words, Nf is the number of forecasts

made by di¤erent time-series models which are under evaluation. The empirical counterpart

counts the number of forecast combinations that o¤ers loss that are less than the given z level

(i.e., given quantile of the loss distribution) when j = 1. On the other hand, we look for the sum

of the area under the integral (i.e., sum of the forecast errors) up to a given z level with a given

forecast combination when j = 2.

We consider the weighted Kolmogorov-Smirnov type test statistic

Ŝj :=
p
Nf

1

Nf
sup
�

h
Jj(z;�; F̂ )� Jj(z; � ; F̂ )

i
for given z level (4)

and a test based on the decision rule

� Reject Hj
0 if Ŝj > cj ";

where cj is some critical value.

To make the result operational, we need to �nd an appropriate critical value cj . Because the

distribution of the test statistic depends on the underlying distribution, this is not an easy task,

and we decide hereafter to rely on a block bootstrap method to simulate p-values, where the

critical values are obtained using a supremum statistic.7 In this context, the observations are

functions of error terms that can be assumed to be serially uncorrelated. Hence, we apply the

simulation methodology proposed by Barrett and Donald (2003) for i.i.d. data in multivariate

6 Forecasts from di¤erent models are updated recursively by expanding the estimation window by one
observation forward, thereby reducing the pseudo-out-of-sample test window by one period. Therefore,
for each of h-step forecasts, we calculate Nf forecasts from each of the model, as explained in the following
section.

7 The asymptotic distribution of F̂ is given by
p
Nf (F̂ � F ), which tends weakly to a mean zero

Gaussian process B � F in the space of continuous functions on Rn (see, e.g., the multivariate functional
central limit theorem for stationary strongly mixing sequences stated in Rio (2000)).
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context (see Barrett and Donald, 2003 for details). The test statistic Ŝ1 for �rst-order stochastic

dominance e¢ ciency is derived using mixed integer programming formulations (see Appendix).8

To sum up, for a given quantile of loss distribution, we analyze whether the equally weighted

forecast combination is optimal or not. We test whether an alternative combination of forecasts

provides a loss distribution up to a given quantile of loss that would dominate such distribu-

tion when forecasts are combined in an equally weighted way. If an alternative combination of

forecasts dominates the equally weighted combination, then there is an alternative combination

which yields a distribution of loss that is the optimal one at that given quantile.

3 Empirical Analysis

3.1 Data, Forecasting Models, and Forecast Methodology

In this section, we apply the SDE testing methodology to obtain optimal forecast combinations

on Japanese yen/U.S. dollar and U.S. dollar/Great Britain pound exchange rate returns data.

We use log �rst di¤erences of the exchange rate levels. The exchange rate series data are ex-

pressed with a weekly frequency for the period between 1975:1-2010:52.9 The use of weekly

data avoids the so-called weekend e¤ect, as well as other biases associated with non-trading,

bid-ask spread, asynchronous rates and so on, which are often present in higher-frequency data.

To initialize our parameter estimates, we use weekly data between 1975:1 - 2006:52. We then

generate pseudo- out-of-sample forecasts of 2007:1 - 2009:52 to analyze the forecast performance

at the 2007/2009 �nancial crisis period. We also generate pseudo- out-of-sample forecasts for the

period between 2010:1 and 2012:52 to analyze the performance of the forecasts out-of-�nancial

crisis period. Parameter estimates are updated recursively by expanding the estimation window

by one observation forward and thereby reduce the pseudo out-of-sample test window by one

period.

In our out-of-sample forecasting exercise, we concentrate exclusively on univariate models,

and we consider three types of linear univariate models and four types of nonlinear univariate

models. The linear models are random walk (RW), autoregressive (AR), and autoregressive

moving-average (ARMA) models; the nonlinear ones are logistic smooth transition autoregressive

(LSTAR), self-exciting threshold autoregressive (SETAR), Markov-switching autoregressive (MS-

AR), and autoregressive neural network (ARNN) models.

Let ŷt+h;t be the forecast of yt+h that is generated at time t for the time t + h (h � 1) by

any forecasting model. In the RW model, ŷt+h;t is equal to the value of yt at time t.

The ARMA model is
8 In this paper, we only test �rst-order SDE in the empirical applications below. Because there are

forecast combinations with alternative weighting schemes that dominate the equally weighted forecast
combination at the �rst order, we do not move to the second one.

9The daily noon buying rates in New York City certi�ed by the Federal Reserve Bank of New York for
customs and cable transfer purposes are obtained from the FREDÂ R Economic Data system of Federal
Reserve Bank of St. Louis (http://research.stlouisfed.org). The weekly series is generated by selecting
the Wednesday series (if Wednesday is a holiday, then the subsequent Thursday is used).
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yt = �+

pX
i=1

�1;iyt�i +

qX
i=1

�2;i"t�i + "t; (5)

where p and q are selected to minimize the Akaike Information Criterion (AIC) with a max-

imum lag of 24. After estimating the parameters of equation (5), one can easily produce h-step

(h � 1) forecasts through the following recursive equation:

ŷt+h;t = �+

pX
i=1

�̂1;iyt+h�i +

qX
i=1

�̂2;i"t+h�i : (6)

When h > 1, to obtain forecasts, we iterate a one-period forecasting model by feeding the

previous period forecasts as regressors into the model. This means that when h > p and h > q,

yt+h�i is replaced by ŷt+h�i;t and "t+h�i by "̂t+h�i;t = 0.

An obvious alternative to iterating forward on a single-period model would be to tailor the

forecasting model directly to the forecast horizon, i.e., to estimate the following equation by

using the data up to t:

yt = �+

pX
i=0

�1;iyt�i�h +

qX
i=0

�2;i"t�i�h + "t; (7)

for h � 1. We use the �tted values of this regression to directly produce an h-step ahead

forecast.10

Because it is a special case of ARMA, the estimation and forecasts of the AR model can be

obtained by simply setting q = 0 in (5) and (7).

The LSTAR model is

yt =

 
�1 +

pX
i=1

�1;i yt�i

!
+ dt

 
�2 +

qX
i=1

�2;i yt�i

!
+ "t; (8)

where dt = (1 + exp f�(yt�1 � c)g)�1. Whereas "t are regarded as normally distributed i.i.d.
variables with zero mean, �1, �2, �1;i, �2;i,  and c are simultaneously estimated by maximum

likelihood methods.

In the LSTAR model, the direct forecast can be obtained in the same manner as with ARMA,

which is also the case for all of the subsequent nonlinear models11 , but it is not possible to apply

any iterative scheme to obtain forecasts for multiple steps in advance, as can be done in the case

of linear models. This impossibility follows from the general fact that the conditional expectation

of a nonlinear function is not necessarily equal to a function of that conditional expectation. In

10Deciding whether the direct or the iterated approach is better is an empirical matter because it involves
a trade-o¤ between the estimation e¢ ciency and the robustness-to-model misspeci�cation; see Elliot and Tim-
mermann (2008). Marcellino et al. (2006) have addressed these points empirically using a dataset of 170 US
monthly macroeconomic time series. They have found that the iterated approach generates the lowest MSE val-
ues, particularly if lengthy lags of the variables are included in the forecasting models and if the forecast horizon
is long.
11This process involves replacing yt with yt+h on the left-hand side of equation (9) and running the regression

using data up to time t to �tted values for corresponding forecasts.
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addition, one cannot iteratively derive the forecasts for the time steps h > 1 by plugging in the

previous forecasts (see, e.g., Kock and Terasvirta, 2011).12 Therefore, we use the Monte Carlo

integration scheme suggested by Lin and Granger (1994) to numerically calculate the conditional

expectations, and we then produce the forecasts iteratively.

When jj ! 1, the LSTAR model approaches the two-regime SETAR model, which is also
included in our forecasting models. As with LSTAR and most nonlinear models forecasting with

SETAR does not permit the use a simple iterative scheme to generate multiple-period forecasts.

In this case, we employ a version of the Normal Forecasting Error (NFE) method suggested

by Al-Qassam and Lane (1989) to generate multistep forecasts.13 NFE is an explicit, form-

recursive approximation for calculating higher-step forecasts under the normality assumption of

error terms and has been shown by De Gooijer and De Bruin (1998) to perform with reasonable

accuracy compared with numerical integration and Monte Carlo method alternatives.

The two-regime MS-AR model that we consider here is as follows:

yt = �s +

pX
i=1

�s;iyt�i + "t; (9)

where st is a two-state discrete Markov chain with S = f1; 2g and "t � i.i.d. N(0; �2). We

estimate MS-AR using the maximum likelihood expectation-maximization algorithm.

Although MS-AR models may encompass complex dynamics, point forecasting is less com-

plicated in comparison to other non-linear models. The h-step forecast from the MS-AR model

is

ŷt+h;t = P (st+h = 1 j yt; :::; y0)
 
�s=1 +

pX
i=1

�̂s=1;iyt+h�i

!

+P (st+h = 2 j yt; :::; y0)
 
�s=2 +

pX
i=1

�̂s=2;iyt+h�i

!
; (10)

where P (st+h = i j yt; :::; y0) is the ith element of the column vector Ph�̂tjt. In addition, �̂tjt
represents the �ltered probabilities vector and Ph is the constant transition probability matrix

(see Hamilton, 1994). Hence, multistep forecasts can be obtained iteratively by plugging in

1; 2; 3; : : :-period forecasts that are similar to the iterative forecasting method of the AR processes.

ARNN, which is the autoregressive single-hidden-layer feed-forward neural network model14

suggested in Terasvirta (2006), is de�ned as follows:

yt = �+

pX
i=1

�iyt�i +
hX
j=1

�jd

 
pX
i=1

iyt�i � c
!
+ "t; (11)

12 Indeed, dt is convex in yt�1 whenever yt�1 < c, and �dt is convex whenever yt�1 > c. Therefore, by Jensen�s
inequality, naive estimation underestimates dt if yt�1 < c and overestimates dt if yt�1 > c.
13A detailed exposition of approaches for forecasting from a SETAR model can be found in van Dijk at al.

(2003).
14See Franses and van Dijk (2000) for a review of feed-forward-type neural network models.
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where d is the logistic function, which is de�ned above as d = (1 + exp f�xg)�1. In general,
the estimation of an ARNN model may be computationally challenging. Here, we follow the

QuickNet method, which is a type of �relaxed greedy algorithm"; it was originally suggested by

White (2006). In contrast, the forecasting procedure for ARNN is identical to the procedure for

LSTAR.

To obtain pseudo-out-of-sample forecasts for a given horizon h, the models are estimated

by running regressions with data that were collected no later than the date t0 < T , where t0
refers to the date when the estimation is initialized, and T refers to the �nal date in our data.

The �rst h-horizon forecast is obtained using the coe¢ cient estimates from the initial regression.

Next, after moving forward by one period, the procedure is repeated. For each h-step forecast,

we calculate Nf (= T � t0 � h � 1) forecast errors for each of the models that we use in our
applications.

3.2 Forecast selection and combination

Before proceeding with our application, in this section we o¤er di¤erent set of model selection

and combination methods that are employed extensively in the literature. Akaike�s information

criterion (AIC) and Bayesian information criterion (BIC) are two of the most commonly used

selection criteria that serve to select a forecasting model (see, for example, Swanson and Zeng,

2001; Drechsel and Maurin, 2010, among many others). The model that provides the lowest AIC

or BIC, calculated as below, for a model m is chosen as the preferred model.

AIC(m) = n ln(b�2m) + 2km; (12)

BIC(m) = n ln(b�2m) + km lnn; (13)

where b�2m is the forecast error variance estimate and km is the number of regressors used in

each respective model. This procedure requires the selection of the forecasting model that o¤ers

the minimum value of AIC or BIC. Another classical method that is used to select the best

individual forecasting model is to select the model that o¤ers the least forecast variance, also

called predictive least squares (PLS) (Rissanen, 1986).

However, these procedures neglect the fact that, as is discussed above, the combination of

di¤erent models could perform better than the selection of a single model as the best model.

Therefore, the procedure can be modi�ed accordingly so that weights given to each model is

determined based on the distance between each model�s AIC (BIC) from the minimal performing

model�s AIC (BIC) level. Hence, de�ning the di¤erence between the AIC(m) (BIC(m)) and

the min(AIC) (i.e., the model that o¤ers the lowest AIC) as �AIC(m) = AIC(m)�min(AIC)
(�BIC(m) = BIC(m) � min(BIC)), the exponential �Akaike weights�, wAIC(m), (see, e.g.,

Burnham and Anderson, 2002) and �Bayesian weights�, wBIC(m), (see, e.g., Raftery, 1995;

Fernández et al., 2001; Sala-i-Martin et al., 2004 among many others) can be obtained as follows:
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wAIC(m) =
exp

�
� 1
2�AIC(m)

�PM
j=1 exp

�
� 1
2�AIC(j)

� ; (14)

wBIC(m) =
exp

�
� 1
2�BIC(m)

�PM
j=1 exp

�
� 1
2�BIC(j)

� ; (15)

Then these weights can be utilized to combine the forecasts of m models. Another commonly

used method to combine forecasts is to allocate weights to each model inversely proportional

to the estimated forecast error variances (Bates and Granger, 1969). Whereas, Granger and

Ramanathan (1984) employs ordinary least squares (minimizing the sum of squared errors) to

obtain optimal weights for the point forecasts of individual models. Given that we also compare

the distribution of loss at a given quantile of equally-weighted forecasts, we also compare our

�ndings with the weights obtained the standard quantile regression weights (Koenker, 2005).

Among all these model selection and combination methods, the recent literature, as mentioned

earlier, also employs the equally weighted forecast combination and the median forecast (see

e.g., Stock and Watson, 2004; Kolassa, 2011). All forecast model selection and combination

methods discussed in this section will be employed and compared to the method with SDE

weights proposed in this paper.

4 Results for the e¢ ciency of forecast combinations

This section presents our �ndings of the tests for �rst-order SD e¢ ciency of the equally weighted

forecast combination. We �nd that the equally weighted forecast combination is not the optimal

forecast combination at all quantiles of the forecast error distribution, but it o¤ers to be equally

well in some quantiles of the distribution. It might seem that the SDE methodology �nds an

optimal forecast combination when compared to the equally-weighted forecast combination scen-

ario alone and ignores the performance of the rest of the available combinations. However, this

is not the case. The SDE methodology �nds the optimal combination from the set of all possible

combinations (i.e., full diversi�cation is allowed across di¤erent univariate forecasts). Hence, the

optimal SDE forecast combination would also dominate the rest of the possible combinations

as these are part of the available choice set. We obtain the best forecast combinations of the

model-based forecasts for the Japanese yen/U.S. dollar and the U.S. dollar/Great Britain pound

exchange rate forecasts by computing the weighting scheme on each forecast model that o¤ers

the optimal forecast combination at di¤erent quantiles of the loss distribution.

In our applications, because the loss distribution (i.e., absolute forecast error distribution)

with the equally weighted forecast combination is known, we can obtain the number of forecast

combinations that generate loss that are less than each given level of loss, z. In other words,

one could obtain the number of forecasts that generate loss that is below a given quantile of the

loss distribution with the equally weighted forecast combination. We test di¤erent quantiles of

the empirical loss distribution of the average forecast combination, that is, we test whether the

equally weighted forecast combination is the best forecast combination against the alternative
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combination at di¤erent parts of the empirical distribution. In the next section, we report the

optimal forecast combination for di¤erent percentiles (i.e., 50th, 75th, 95th percentiles) of the

empirical loss distribution for the two applications for di¤erent forecast periods and horizons.15

We also report the average of the optimal forecast combinations that are obtained for di¤erent

loss levels (i.e., di¤erent quantiles of the loss distribution)16 . For each application, we also

compare the best forecast combinations obtained with SDE weights with di¤erent set of model

selection and combinations that are used commonly in the literature.

4.1 The Japanese yen/U.S. dollar exchange rate application

First, we begin our empirical analysis with the weekly Japanese yen/U.S. dollar exchange rate

forecasts for di¤erent forecast horizons for the �nancial crisis period of 2007/2009 (i.e., 2007:01

and 2009:52). We proceed with testing whether the equally weighted forecast combination of the

forecasting models for di¤erent horizons is the optimal forecast combination at di¤erent levels

of loss or there are alternative weights on the forecast models that stochastically dominate the

equally weighted forecast combination, �
0byt+h;t, in the �rst-order sense for some or all levels

of loss, where the number of forecast combinations that generates loss above a given z level is

minimized.17

Table 1 presents the results for the 50th, 75th, and 95th percentiles of the loss distribution

of the equally weighted forecast combination for the di¤erent forecast horizons (h). The second

column gives the details of the forecast period. Whereas, the third column reports the loss levels

(i.e., absolute forecast errors) with the equally weighted forecast combinations at these particular

percentiles. The following columns provide the weights of the underlying forecasting models for

the optimal forecast combinations at the 50th, 75th, and 95th percentiles of the loss distribution

with the equally weighted forecast combination.

15 In this paper, we only report optimal forecast combinations for 50th, 75th and 95th percentiles of
the error distribution. However, the SDE methodology can also be used to obtain optimal forecast
combinations at lower percentiles of the distribution. We do not report these results to conserve space,
given that the practical gains of optimal forecast combination at lower percentiles may not be as are
important.
16The empirical distribution of loss consists of di¤erent levels of loss, possibly exceeding 150 depending

on the nature of the application. Therefore, rather than reporting the optimal forecast combination for
all levels of loss, we only report results at selected percentiles of the loss function. However, the full set
of optimal forecast combinations for di¤erent loss levels can be obtained upon request from authors.
17 In the exchange rate application, over-forecasting or under-forecasting (forecasts that are above and

below the realization respectively) would lead to decisions that would harm the traders. For example,
over-prediction (predicting appreciation of foreign currency) could reinforce investors to sell short the
domestic currency (and buy foreign currency now, which is forecasted to appreciate in future). Similarly,
under-prediction (predicting depreciation of foreign currency) can lead to a short-selling of the foreign
currency (i.e., selling the foreign currency now and trading it back in near future). Both over- and
under-forecasting would lead to decisions that would harm the traders and hence the trader would aim
to minimize the forecast errors rather than the sign of the error and they would not worry about whether
the errors have all the same sign. However, given the context of the application, it is possible that the
sign of the errors might be important to take into account. We thank the one of the anonymous referees
for pointing out this issue.
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In one step ahead forecast horizon, i.e., when h = 1, we have 156 forecasts for each of

the di¤erent time-series models. As indicated in the �rst panel of Table 1, there is always an

alternative forecast combination that generates less number of loss above a given loss level at

the 50th, 75th and 95th percentiles of the loss distribution (i.e., optimal forecast combination).

For example, at the 50th percentile of the loss distribution, when forecasts from AR, ARMA,

and SETAR obtain weights of 4.33%, 4.04% and 91.63%, respectively, this combination o¤ers

the optimal combination for this part of the distribution. For the 75th percentile of the loss

distribution, when forecasts from AR, RW, and SETAR obtain weights of 94.20%, 0.62% and

5.18%, respectively, this combination o¤ers the optimal combination up to this percentile. Similar

to the 75th percentile of the loss distribution, AR, RW and SETAR contributes to the optimal

forecast combination for the 95th percentile of the loss distribution with weights of 86.64%,

1.87% and 11.50%, respectively. Overall, when h = 1, di¤erent forecast combinations generate

the best forecast combinations for di¤erent sections of the loss distribution. SETAR contributes

the most to the optimal forecast combination at the 50th percentile of the loss distribution and

AR contributes the most at the 75th and 95th percentiles of the loss distribution.

We carried out the same application when we extended the forecast horizon for 6 months (26

weeks) and a year (52 weeks) (i.e., h = 26 and 52 respectively), where for each case, each model

produces 130 and 104 forecasts, respectively.

For h = 26, at the 50th and 75th percentiles, AR model contribute relatively more to the

optimal forecast combination. Whereas, at the 95th percentile, ARMA contributes to the optimal

forecast combination the most with 45.88%, followed by the contribution of the SETAR, RW and

AR models with weights of 27.03%, 14.53%, and 12.56% respectively. The similar trend for the

optimal forecast combination continues for h = 52 where ARMA model contributes the most at

the 50th percentile and AR model contributes the most at the 75th and 95th percentiles.

Figure 1 shows the cumulative distribution functions of the absolute error terms with equally

weighted (EW) and SDE forecast combinations for forecast periods of 2007:01-2009:12, 2007:07-

2009:12 and 2008:01-2009:12 (h = 1, 26 , and 52 respectively). Vertical and horizontal axis

describe the probability and forecast error levels. For a given error level, there is always a higher

portion of forecasts that o¤er absolute error that is below this error level with the SDE forecast

combination when compared to the EW combination. In Panel A (where the forecast period

is 2007:01-2009:12), 50% of the EW forecast combinations o¤er an error that is below 0.0117,

whereas the 56.5% of the forecast combinations with SDE weights have an error that is less than

this error level. One could interpret the results as follows. If a company guarantees to provide

compensation to their customers if their forecasts give an error level (loss) above 0.0117, then

the company would compensate 50% of its customers relying on the EW forecast combination,

whereas, this compensation rate would have been only 43.5% if the SDE weights would have

been used.

In this subsection, we presented the best forecast combinations at di¤erent percentiles of loss

distribution when we consider the equally weighted forecast combination as the �benchmark�.

In the next subsection, we o¤er a comparison of SDE weights not only with equally weighted

forecast combination but also with median forecast, model selection methods (i.e., AIC, BIC,

16



and PLS), and the forecast combination methods (i.e., combination of forecasts with Bates and

Granger, Granger and Ramanathan, AIC, and BIC weights, quantile regression).

4.2 Comparisons

SDE weights obtained in the previous section suggested that when the equally weighted forecast

combination is the benchmark, there is always an alternative forecast combination which would

constitute a better case at di¤erent quantiles of the loss distribution for all forecast horizons. To

evaluate SDE weights further, we also obtain median forecast, and forecasts with di¤erent model

selection and combination methods that are mentioned above.

To make the results more apparent for each forecast horizon, Table 2 presents the number

of forecasts with di¤erent forecast selection and combination methods that o¤er loss levels that

are equal to or less than a given level of loss, z, at the 50th, 75th and 95th percentiles with

the equally weighted forecast combination (EW), median forecast (Median), forecasts with the

best model chosen with AIC, BIC and PLS, and forecast combinations with Bates and Granger,

Granger and Ramanathan, AIC, BIC, and quantile regression weights.

In Table 2, we calculate the number of forecasts with di¤erent forecast selection and combina-

tion methods that o¤er loss levels that are equal to or less than a given level of loss, z, at the 50th,

75th, and 95th percentiles of the loss distribution from the equally weighted forecast combination.

The optimal forecast combinations with the SDE weights are obtained using the weights from

Table 1. Moreover, we obtain median forecast, forecasts from the model that is chosen with the

AIC, BIC, and PLS criteria, and forecast combinations with Bates and Granger, Granger and

Ramanathan, AIC, BIC weights and quantile regression weights for a given percentile. Each of

these methods yields loss distributions which are compared with the distribution of loss obtained

with the optimal forecast combinations using the SDE weights. For example, for h = 1; at 50th

percentile of loss distribution, there are 78 combined forecasts that generate loss levels that are

less than or equal to the loss level of 0.0109 when forecasts are combined with equal weights. On

the other hand, the best forecast combination with SDE weights yields 88 combined forecasts

that generate loss levels that are equal to or less than 0.0109. Whereas, the forecasts obtained

with other forecast selection and combination methods generate less number of loss levels that

are equal to or less than 0.0109 suggesting that these methods o¤er more forecasts that gives a

loss level that are above 0.0109 when compared to the best-case with the SDE weights. In other

words, the SDE weights o¤er the least number of forecasts with a loss above a given threshold

(which is 0.0109 in this case). If a company agrees to compensate consumers if their forecast er-

rors are above 0.0109, then if it uses the forecast combination with SDE weights, it would need to

compensate 10 less cases than the second best-case o¤ering the lowest number of forecasts above

0.0109, which in this case is the equally weighted forecast combination. Similarly, for the 75th

and 95th percentiles, the best forecast combination with SDE weights performs better than the

most of other forecast selection and combination methods where there are 120 and 150 forecasts

that produce loss levels that are equal to or less than 0.0181 and 0.0364, respectively. In other

words, the optimal forecast combinations with SDE weights produce 36 and 6 forecasts that give
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loss levels that are above 0.0172 and 0.0318, respectively. We also �nd that the median forecast

and forecast combination with the Bates and Granger weights produce equally well outcomes at

the 75th and 95th percentiles, respectively. However, the SDE weights o¤er the best or equally

well position for di¤erent parts of the absolute error distribution, whereas the forecast selection

and combination methods only work equally well in certain percentiles of the loss distribution.

We carry out the same analysis when we change the forecast horizons. When h = 26, at the

50th percentile of the loss distribution, SDE weights o¤ers the least number of forecasts that give

an error level above 0.0117 when compared to other methods. On the other hand, at the 75th and

95th percentiles of the loss distribution, the forecasts with PLS and forecast combination with

Granger and Ramanathan weights o¤er an equally well, respectively. For h = 52, at the 50th

percentile of the loss distribution, forecast combination with quantile regression o¤ers equally

well case compared to forecast combination with SDE weights. However, at the 75th and 95th

percentiles of the loss distribution, forecast combination with SDE weights o¤ers the least number

of forecasts that give an error level that is above a given level.

We only presented the SDE weights for the best forecast combination at 50th, 75th, and

95th percentiles of the loss distribution. However, Table 3 illustrates the average contribution

of each forecasting model to the best forecast combination with SDE weights. These average

contributions are calculated by averaging the di¤erent weights over all percentiles of the entire

loss distribution. One can see that each model contributes slightly to the optimal forecast

combination in di¤erent areas of the loss distribution for di¤erent forecast horizons. However,

the main contributor to the optimal forecast combination is the AR model, followed by SETAR,

LSTAR and ARMA, on average considering all horizons.

Overall, for the weekly Japanese yen/U.S. dollar exchange rate forecasts, we �nd that the

best forecast combination with SDE weights mostly outperforms the other forecast selection and

combination models, with some few exceptions where some other models perform equally well.

We also should note that the objective of the SDE weight allocation is to obtain the lowest number

of forecasts that give a loss above a given threshold, not to minimize the overall loss. Hence, we

do not produce conventional comparisons of di¤erent methods, but we simply compare whether

SDE approach dominates other forecast selection and combination methods given the loss level.

For example, when h = 1, if one were to use conventional comparisons, for the 50th percentile,

the combination obtained with the quantile regression o¤ers the lowest mean absolute error for

this percentile compared to other methods. In other words, if the forecaster�s objective is to

minimize the aggregate (or mean) loss up to a given forecast percentile, the forecast combination

through quantile regression would be a better model to use. Yet, if the forecaster�s objective is

to minimize the number of forecasts that gives a loss above a given level, then SDE weights o¤er

better (and in a few cases equally well) forecast combinations compared to any other forecast

selection and combination. Therefore, forecast combinations with the SDE methodology o¤er

a complementary approach to the standard forecast selection/combination methods used in the

forecasting literature as they can produce better outcomes if one were to minimize the number

of forecasts with a loss above a given threshold.
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4.3 U.S. dollar/Great Britain pound exchange rate application

In this subsection, we obtain the optimal forecast combination for the foreign exchange rate

of U.S. dollar/Great Britain pound forecasts for di¤erent time horizons at di¤erent quantiles

of the loss distribution for the �nancial crisis period of 2007/2009 (i.e., 2007:01 and 2009:52).

Table 4 presents the best forecast combinations with SDE method at the 50th, 75th and 95th

percentiles of the loss distribution of the equally weighted forecast combination when h = 1, 26,

and 52 respectively. Table 5 reports the number of forecasts with di¤erent forecast selection and

combination methods that o¤er loss levels that are equal to or less than a given level of loss for

di¤erent percentiles of the loss distribution. Finally, Table 6 presents the average SDE weights

of each model that contribute to the optimal forecast combination.

The optimal weights obtained for the foreign exchange rate of U.S. dollar/Great Britain pound

are very similar to the ones obtained for the Japanese yen/U.S. dollar exchange rate data (see

Table 4 for details). For h = 1, AR, ARMA, ARNN and SETAR are the main contributors to the

optimal forecast combination with SDE weights with di¤ering levels of contribution in di¤erent

percentiles. AR model contributes the most to the optimal forecast combination at 50th, 75th

and 95th percentiles of the loss distribution when h = 26. Finally, when h = 52, ARMA and

SETAR contribute the most to the optimal forecast combination at the 50th percentile and

AR model is the main contributor to the optimal forecast combination at the 75th and 95ht

percentiles.

Figure 2 shows the cumulative distribution functions of the absolute error terms with equally

weighted (EW) and SDE forecast combinations for forecast periods of 2007:01-2009:12, 2007:07-

2009:12 and 2008:01-2009:12 (h = 1, 26, and 52 respectively). Vertical and horizontal axis o¤er

the probability and forecast error levels. For a given error level, there is always a higher portion of

forecasts that produce absolute errors below this level with the SDE forecast combination when

compared to the EW combination. In Panel A (where the forecast period is 2007:01-2009:12),

50% of the EW forecast combinations o¤er an error that is below 0.01, whereas the 54% of the

forecast combinations with SDE weights have an error that is less than this error level.

Table 5 summarizes the comparisons of performance of di¤erent models at di¤erent sections

of the loss distribution for di¤erent horizons. SDE weights for the best forecast combination

outperforms the other forecast selection and combination models for h = 26 at 75th and 95th

percentiles of the loss distribution. Similarly, when h = 52, forecast combination with the SDE

weights outperforms the other forecast selection and combination models at the 50th and 75th

percentiles of the loss distribution. However, when h = 1, at 50th, 75th and 95th percent-

iles, there are always other forecast selection and/or combination methods that perform equally

well. These cases are obtained by the forecast combination with quantile regression at the 50th

percentile; forecast combinations obtained by the Granger and Rahmanathan and quantile re-

gression weights at the 75th percentile; and forecasts obtained with the median, AIC and BIC

methods and forecast combinations with the AIC and BIC weights. Overall, we �nd that the

best forecast combination with SDE weight performs better than other forecast selection and

combination cases in most of the cases with very few cases where other forecast selection and
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combination methods o¤er equally well outcomes.

On average, forecasts from the AR, SETAR, ARMA and ARNNmodels contribute the most to

the optimal forecast combination obtained with SDE weights with di¤erent contribution levels at

di¤erent forecast horizons (see Table 6 for details). However, these models contribute di¤erently

at di¤erent parts of the loss distribution. For example, the AR model contributes the most to the

optimal forecast combination when at the 75th and 95th percentiles of the loss distribution for all

horizons considered. Whereas forecasts from the ARMA model contributes relatively more to the

optimal forecast combination at the 50th percentile of the loss distribution for h = 1 and h = 52.

Overall, the AR model is the main contributor to the optimal forecast combination throughout

the error distribution, and SETAR, ARMA and ARNN models contribute signi�cantly more to

the optimal forecast combination at di¤erent horizons and percentiles (see Table 4 and 6 for

details).

5 Robustness analysis

5.1 Di¤erent forecast periods and out-of-sample performance

In the previous section, we considered the �nancial period (i.e., forecasts obtained between 2007

and 2009) and we �nd that the forecast combinations obtained with the SDE produce the lowest

number of forecasts that give a loss above a given threshold in most of the cases analyzed over

this period. In this section, we repeat our analysis to obtain optimal forecast combination for

the U.S. dollar/Great Britain pound and Japanese yen/U.S. dollar exchange rate forecasts with

the SDE methodology with the forecasts obtained for the period between 2010 and 2012, and

compare its performance with other forecast selection and combination methods.

Panels A and B of Table 7 summarize the forecast combinations obtained with the SDE

methodology for the Japanese yen/U.S. dollar and U.S. dollar/Great Britain pound exchange

rate forecasts, respectively. Absolute forecast errors obtained with the equally-weighted forecast

combination are given at the 50th, 75th and 95th percentiles when di¤erent forecast horizons

are used. When compared to the �nancial crisis period (see Table 1 and 4 forecast error levels

at di¤erent percentiles), after the �nancial crisis, the equally-weighted combination produced

better forecasts at all horizons. However, the SDE methodology produced an alternative fore-

cast combination that dominated the equally-weighted one at a given level. For the Japanese

yen/U.S. dollar (Panel A of Table 7), we �nd that AR model contributes the most to the forecast

combination at the 50th and 75th percentiles of the loss distribution for h = 1 and h = 52, and

95th percentile of the loss distribution for h = 26 whereas the SETAR model contributes the

most to the optimal forecast combination at the 95th percentile of the loss distribution for h = 1,

and at the 50th and 75th percentiles of the the loss distribution for h = 26. Finally, LSTAR

is the other model that contributes signi�cantly high to the optimal combination at the 95th

percentiles of the loss distribution for h = 26 and h = 52. On the other hand, with the U.S.

dollar/Great Britain pound exchange rate application, the AR model contributes signi�cantly

high levels to the optimal combination at the 50th and 75th percentiles of the loss distribution for
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h = 1, at the 50th percentile of the loss distribution for h = 26, 50th and 75th percentiles of the

loss distribution for h = 52. Similarly, SETAR is the other model that contributes signi�cantly

to the optimal forecast combination at the 50th, 75th, 95h percentiles for h = 1, at the 75th and

95th percentiles of the loss distribution for h = 26, and 95th percentile of the loss distribution for

h = 52. Finally, the LSTAR model contributes the most to the optimal combination at the 50th

percentile of the loss distribution for h = 52. Overall, for the 50th, 75th and 95th percentiles of

the loss distributions with di¤erent forecast horizons, AR and SETAR models are the main ones

that contribute signi�cantly to the optimal forecast combination, where LSTAR also contributes

signi�cantly in few cases. Whereas, other models�contributions are either minimal or none.

Similar to the previous section, we provide comparisons of forecast combination obtained

with the SDE methodology with the standard forecast selection and combination methods where

Panels A and B of Table 8 summarize the results for the Japanese yen/U.S. dollar and U.S.

dollar/Great Britain pound exchange rate respectively. With few exceptional cases, the forecast

combinations obtained with the SDE produce a minimum number of forecasts that have a loss

above a given level. The second best model for the application at hand is the quantile regression

which produces equally well outcomes in some cases. In particular, with the Japanese yen/U.S.

dollar exchange rate application, the quantile regression also produces the best case at the 50th

percentiles of the loss distribution at all forecast horizons and 75th percentile of the loss dis-

tribution for h = 52 (see Panel A of Table 8). On the other hand, with the U.S. dollar/Great

Britain pound exchange rate application, the quantile regression o¤ers equally well results at the

50th percentiles of the loss distribution at all forecast horizons and 95th percentile of the loss

distribution for h = 52 (see Panel B of Table 8).

Tables 7 and 8 present the forecast combinations and comparisons at 50th, 75th, and 95th

percentiles of the loss distribution respectively, yet we obtain forecast combinations for all per-

centiles of the loss distribution. Panels A and B of Table 9 gives the average contribution of each

forecasting model to the best forecast combination with SDE weights for the Japanese yen/U.S.

dollar and U.S. dollar/Great Britain pound exchange rate respectively. On average, the AR

model contributes the most to the optimal combination at all horizons, followed by the SETAR

model. With respect to Japanese yen/U.S. dollar application, the AR is the main model con-

tributing the most at all horizons, whereas the second most contributing model is the LSTAR

(SETAR) when h = 1 (h = 26 and h = 52) for the forecasting period after the �nancial crisis.

When we compare the after crisis period results with the one before the crisis (see Table 3), AR

is the main model contributing to the optimal forecast combination in both cases, followed by

SETAR. On the other hand, ARMA model�s contribution to the optimal forecast has decreased

at all horizons. The LSTAR model�s contribution to the optimal forecast has increased for h = 1

but decreased for h = 26 and h = 52. For the U.S. dollar/Great Britain pound exchange rate

application, when we compare the results with respect to the crisis period (see Table 6), AR

and SETAR models are signi�cant contributors in each case, however, both AR and SETAR

models�contribution to the optimal forecast combination is signi�cantly higher at all horizons

for the after the �nancial crisis period. Similar to the Japanese yen/U.S. dollar application, the

ARMA model�s contribution to the optimal combination is lower for the after the crisis period.
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Similarly, on average, the contributions of ARNN for h = 1 and LSTAR for h = 52 are lower

after the crisis.

Overall, the SDE model still produces the optimal forecast combination even after changing

the forecast period in most percentiles (with few exceptions where other model selection and

combination methods produce an equally well outcomes) where there is always a lower number

of forecasts that produce a loss above a given threshold. The only di¤erence between the during

and the after the �nancial crisis periods is that the AR and SETAR models contribute relatively

more to the optimal combination after the �nancial crisis period, while the contributions of

ARMA, ARNN and SETAR models are relatively less after the crisis period when compared to

the �nancial crisis period.

We also evaluate the out-of-sample performance of the SDE forecast combination when com-

pared to the out-of-sample performance of all other forecast selection and combination models.

To do this, we use forecast combination weights obtained for 2010-2012 period for one-step ahead

forecasts for the U.S. dollar/Great Britain pound exchange rates (i.e., weights o¤ered in Panel

B of Table 7 for the case of h = 1) to obtain forecasts for the 2013-2014 period (104 weekly

observations). We also use the in-sample choices made for the di¤erent forecast selection and

combination models to obtain forecasts for the 2013-2014 period. Table 10 presents the out-of-

sample performance results of the di¤erent forecast selection and combination models. At the

50th, 75th and 95th percentiles of the error distribution, the out-of-sample performance of the

forecast combination obtained with SDE is better than those from the other forecast selection and

combination models.18 In all cases, the forecast combination with SDE has the highest number

of forecasts that give errors that are less than a given threshold error. To put it di¤erently, the

forecast combination with the SDE methodology results in the least number of forecasts with an

error that is above a given threshold error level when compared to the other methods. Overall,

the SDE forecast combination not only works well for in-sample but also better for out-of-sample

forecasts.

5.2 Quadratic loss function

It has been well discussed in the literature that when the objective loss function is altered, then

the solutions to the optimal forecast combination also alters. In particular, if the forecast error

distribution is skewed, di¤erent weighted forecast combinations would work better at di¤erent

parts of the empirical distribution of the forecast errors (Elliott and Timmermann, 2004). For

example, replacing the quadratic loss function with the absolute loss function leads to quantile

regression for the median, or in other words, least absolute deviation regression (see Nowotarski

et al., 2014). Hence, the quantile regression is less sensitive to the outliers compared to the

squared forecast error distribution. However, both weights obtained through quantile regression

and minimizing squared forecast errors are aiming to minimize a single measure (i.e., mean

18Note that we do not present the individual out-of-sample results of the univariate models, but all
of the univariate forecast models perform worse than the equally-weighted forecast combination and
therefore worse than the forecast combination obtained with the SDE methodology at the 50th, 75th
and 95th percentiles of the error distribution.
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absolute deviation and mean squared forecast error) and changing the loss function (i.e., squaring

the absolute forecast errors in this case) will alter the optimal forecast combination since the

magnitude of the loss is being altered. When the magnitude of the loss is changed, then the

forecast combination that minimizes the overall aggregate measure (e.g., mean squared forecast

errors vis-a-vis mean absolute forecast error) will be di¤erent. However, SDE methodology does

not aim to minimize the overall loss function, but tries to minimize the number of forecasts

that give loss above a given level, and the optimal forecast combination with either absolute or

quadratic loss function will be the same.

Let us expand our discussion on this. SDE approach�s objective is to minimize the number of

forecasts that give a loss level above a given loss level. In the previous section, SDE approach �nd

a weight allocation across the forecast models (�) that minimize the number of absolute forecast

errors above a given loss level, z, (i.e., given absolute forecast error level), which is obtained

by the following loss function:
���yt+h � �0byt+h;t���. For example, when equally weighted forecast

combination (�
0byt+h;t) is used, one already knows the distribution of the absolute forecast errors

obtained from
���yt+h � � 0byt+h;t��� where absolute errors are given in ascending order, 0 � "1 <

"2::: < "N . Given the threshold loss level (z), we can consider that 50% of the forecasts give

absolute forecast errors that is above this level with the equally weighted forecast combination.

If one were to change the loss function to obtain the distribution of the squared forecast errors:

(yt+h � �
0byt+h;t)2, the ascending distribution of the squared errors will be the same but only

squared this time, i.e., 0 � "21 < "22::: < "2N . Now, given threshold loss level (z
2), 50% of the

forecasts will give squared forecast error above this threshold. The similar logic applies when one

were to �nd the optimal weight allocation through SDE. Hence, the optimal forecast combination

obtained with either loss function will o¤er the same result. Clearly, if one were to minimize

the absolute forecast deviation (and minimized squared forecast deviation) for all the forecasts,

loss function will alter the results as the magnitude of the errors would have been di¤erent but

not the order and distribution of the errors (or squared errors) at a given quantile of the loss

distribution.

In the previous section, we used the absolute forecast error distribution to �nd the optimal

forecast combination for given percentiles of the error distribution. In this section, we use the

squared forecast errors to obtain optimal weights with the SDE approach for the same percentiles.

We use the weekly Japanese yen/U.S. dollar exchange rate forecasts for the �nancial crisis period

of 2007/2009 (i.e., 2007:01 and 2009:52) with the quadratic loss function where the 50th, 75th

and 95th percentiles of the squared forecast errors for h = 1. To provide a similar distribution

of squared forecast errors when compared to the absolute forecast errors, we use higher decimal

places to identify the percentiles of the squared forecast errors. As expected, optimal weights

obtained with the SDE methodology is the same as the one found in Table 1 given for h = 1.

Similarly, we compare the performance of the SDE weights with di¤erent forecast selection and

combination methods at the 50th, 75th and 95th percentiles of the squared forecast errors and

the results are presented in Table 11.19 Given the squared forecast error level, for example,

19We also obtained the results for di¤erent forecast horizons (h = 26 and h = 52) and the results obtained
with the SDE and its relative performance compared to other forecast selection and combination methods
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0.000118, there is always a higher proportion of forecasts that produce squared forecast errors

above this threshold with the forecasts obtained with forecast selection and combination methods

compared with the one obtained with the SDE weights.

Overall, our �ndings are robust to the choice of the loss function (i.e., either absolute forecast

error or squared forecast errors) as altering the loss function does not alter the order of losses

obtained with di¤erent forecast selection and combination methods. Changing the loss function

will indeed change the optimal forecast combination obtained by the mainstream methods used

in the forecasting literature as these methods consider all forecasts and minimize the overall

deviation or loss (e.g., quadratic loss function gives more weight to the large forecast errors

compared to least absolute deviation). However, the SDE methodology minimizes the number

of forecasts that gives a loss above a given threshold level and changing the loss function do not

alter the position of the losses in the distribution and the results are robust to the choice of the

loss function.

6 Conclusion

In this paper, we provide SDE properties to combine forecasts by which optimal forecast com-

binations are obtained at di¤erent quantiles of the loss distribution when compared with respect

to all possible forecast combinations constructed from a set of time-series model forecasts. The

SDE approach di¤ers from the mainstream forecast combination approaches and complements

them. In particular, mainstream forecast combination methods minimize the total sum of losses

(such as for example the sum of squared forecast errors or absolute forecast errors), but the SDE

methodology obtain the forecast combinations that will minimize the number of forecasts that

produce losses above a given threshold rather than the aggregate measure of loss. In that respect,

the SDE approach complements the existing forecast selection and/or combination methods when

the forecasting priority is to minimize the number of forecasts that produce loss levels above a

given threshold. In that respect, the SDE methodology is particularly well-suited for the cases

when a company (such as an insurance company) promises to compensate its consumers if their

losses (forecast errors) are above a threshold error level rather than trying to minimize the overall

loss.

We applied the SDE methodology to construct the optimal forecast combination for di¤erent

forecast horizons at di¤erent percentiles of the loss distribution for weekly Japanese yen/U.S.

dollar and U.S. dollar/Great Britain pound foreign exchange rate forecasts during and after the

�nancial crisis. During the �nancial crisis period, we �nd that the optimal forecast combination

in di¤erent areas of the loss distribution for di¤erent forecast horizons di¤er. However, the main

contributor to the optimal forecast combination is the AR model both during and after the

�nancial crisis period. Overall, there is also agreement that the SETAR, LSTAR, ARMA, and

ARNN models contribute more to the optimal forecast combination at some parts of the loss

distribution during the crisis period. However, after the crisis period, only SETAR (the second

main contributor to the optimal forecast) and LSTAR are the models that contribute to the

remains the same at the 50th, 75th and 95th percentile of the squared forecast error distribution.
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optimal forecast and contributions of ARMA and ARNN to the optimal forecast combination

after the crisis period is limited compared to the crisis period.

In summary, for the majority of the cases considered, forecast combinations with SDE weights

perform better than median forecasts, forecasts from the model that is chosen with AIC, BIC,

and PLS, and forecast combination with equal, Bates and Granger, Granger and Ramanathan,

AIC, BIC, and quantile regression weights at di¤erent parts of the loss distribution. However,

there are also few cases where some other forecast selection and combination model may perform

equally well at some parts of the loss distribution. In particular, forecast combination obtained

with the quantile regression is the second best way of combining forecast in most of the cases.

To test the robustness of the SDE weights, we also used the quadratic loss function in our

analysis. Both the weights obtained with the SDE and the comparison results with the other

methods remained the same when we used the squared forecast error distribution. In particular,

the SDE methodology minimizes the number of forecasts that gives a loss above a given threshold

level and changing the loss function would not alter the position of the forecast errors in the

distribution and as such the results are robust to the choice of the loss function.

Finally, we only applied the SDE analysis to two speci�c data sets with a given number (seven)

of time-series models and, as such, our results on the optimality of the forecast combination at

di¤erent quantiles of loss distribution does not generalize beyond the scope of the applications

at hand. However, the SDE methodology can o¤er a useful way of assessing the optimality of

forecast combinations by using information available in the entire forecast error distribution and

not merely in the �rst two moments, as typically assumed in the literature.
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7 Appendix:

Mathematical formulation of the test statistics

The test statistic Ŝ1 for �rst-order stochastic dominance e¢ ciency is derived using mixed integer

programming formulations. The following is the full formulation of the model:

max
�
Ŝ1 =

p
Nf

1

Nf

NfX
Nf=1

(WNf
�KNf

) for a given z level (16)

s.t.M(KNf
� 1) � z � L("ewt+h;t) �MKNf

; 8Nf (17)

M(WNf
� 1) � z � L("wt+h;t) �MWNf

; 8Nf (18)

e0� = 1; (19)

� � 0; (20)

WNf
2 f0; 1g; KNf

2 f0; 1g; 8Nf (21)

with M being a large constant.

The model is a mixed integer program maximizing the distance between the two binary vari-

ables,
1

Nf

NfX
Nf=1

KNf
and

1

Nf

NfX
Nf=1

WNf
, which represent G(z; � ; F̂ ) and G(z;�; F̂ ), respectively

(the empirical cdf of the loss functions with the forecast combinations, �
0byt+h;t and �0byt+h;t,

respectively, at loss level of z). According to inequality (18), KNf
equals 1 for each scenario of

realization factors Nf for which z � L("ewt+h;t) and equals 0 otherwise. Analogously, inequality

(19) ensures that WNf
equals 1 for each scenario for which z � L("wt+h;t). Equation (20) de�nes

the sum of all forecast combination weights to be unity, while inequality (21) disallows for neg-

ative weights. If the distance between two binary variables are positive, this means that the

number of forecast combinations producing error levels with the �
0byt+h;t up to a given z level

is greater than the �
0byt+h;t. Hence, the number of forecast combinations producing error level

above a given z level is lower with �
0byt+h;t than � 0byt+h;t.

This formulation allows us to test the SD of the equally weighted forecast combination,

�
0byt+h;t, over any potential linear forecast combination, �0byt+h;t, of the forecasts based on
time-series models. When some of the variables are binary, corresponding to mixed integer

programming, the problem becomes non-polynomial (NP)-complete (i.e., formally intractable).

The problem can be reformulated to reduce the solving time and to obtain a tractable formu-

lation (see section 4.1 of ST, for the derivation of this formulation and details on its practical

implementation).
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Table 1 Optimal forecast combinations (Japanese yen/U.S. dollar exchange rates)  

        WEIGHTS 

Forecast horizon Forecast period Percentile Forecast 

error 

AR ARMA LSTAR MS-AR ARNN RW SETAR 

  
50th  0.0109 0.0433 0.0404 0.0000 0.0000 0.0000 0.0000 0.9163 

h=1 (1 week) 2007:01-2009:12 
75th  0.0181 0.9420 0.0000 0.0000 0.0000 0.0000 0.0062 0.0518 

  
95th  0.0364 0.8664 0.0000 0.0000 0.0000 0.0000 0.0187 0.1150 

  
50th  0.0117 0.6638 0.0000 0.1542 0.0000 0.0000 0.1821 0.0000 

h=26 (6 months) 2007:07-2009:12 
75th  0.0191 0.8817 0.0000 0.0000 0.0000 0.0000 0.0041 0.1142 

  
95th  0.0356 0.1256 0.4588 0.0000 0.0000 0.0000 0.1453 0.2703 

  
50th  0.0127 0.1321 0.8679 0.0000 0.0000 0.0000 0.0000 0.0000 

h=52 (1 year) 2008:01-2009:12 
75th  0.0200 0.8175 0.0000 0.0000 0.0000 0.0000 0.0977 0.0848 

  
95th  0.0327 0.8601 0.0000 0.0000 0.0000 0.0000 0.1399 0.0000 



 

 

 

 

 

 

 

 

 

 

 

Table 2 Number of forecast errors below a given forecast error (Japanese yen/U.S. dollar exchange rates) 
Forecast horizon Forecast period Percentile Forecast 

error 

Mean Median AIC BIC PLS AIC 

weights 

BIC 

weights 

Bates - Granger 

weights 

Granger-

Ramanathan 

weights 

Quantile 

regression 

weights 

SDE Best 

h=1  50th 0.0109 78 73 73 73 72 73 73 77 69 72  88 

(1 week) 2007:01-2009:12 75th 0.0181 117 120 119 119 119 119 119 118 119 117 120 

    95th 0.0364 148 148 148 148 149 148 148 150 149 149 150 

h=26   50th 0.0117 65 57 57 57 58 57 57 61 56 65 67 

(6 months) 2007:07-2009:12 75th 0.0191 97 98 98 98 99 98 98 98 98 95 99 

    95th 0.0356 123 123 123 123 123 123 123 123 124 123 124 

h=52   50th 0.0127 52 49 49 49 47 50 50 50 51 56 56 

(1 year) 2008:01-2009:12 75th 0.0200 78 78 78 78 77 78 78 78 76 78 79 

    95th 0.0327 99 96 96 96 96 96 96 97 97 98 100 



 

 

Table 3 Average weights of optimal forecast combinations for the whole distribution (Japanese yen/U.S. dollar exchange rates) 

Forecast horizon Forecast period AR ARMA LSTAR MS-AR ARNN RW SETAR 

h=1 (1 week) 2007:01-2009:12 0.5222 0.0253 0.0004 0.0887 0.0000 0.0119 0.3514 

h=26 (6 months) 2007:07-2009:12 0.4491 0.1382 0.1679 0.0120 0.0074 0.0389 0.1865 

h=52 (1 year) 2008:01-2009:12 0.4848 0.0973 0.1248 0.0000 0.0025 0.0676 0.2230 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Table 4 Optimal forecast combinations (U.S. dollar/Great Britain pound exchange rates)       

        WEIGHTS 

Forecast horizon Forecast period  Percentile Forecast 

error 

AR ARMA LSTAR MS-AR ARNN RW SETAR 

   50th  0.0100 0.0000 0.3567 0.0000 0.0000 0.4825 0.0000 0.1608 

h=1 (1 week) 2007:01-2009:12 75th  0.0193 0.6490 0.0000 0.0000 0.0000 0.0000 0.1139 0.2371 

    95th  0.0430 0.4822 0.0000 0.0000 0.0000 0.4852 0.0326 0.0000 

    50th  0.0125 0.6431 0.0000 0.0000 0.0000 0.0000 0.0028 0.3541 

h=26 (6 months) 2007:07-2009:12 75th  0.0215 0.6275 0.3726 0.0000 0.0000 0.0000 0.0000 0.0000 

    95th  0.0410 0.5297 0.0000 0.0000 0.0000 0.0000 0.2628 0.2075 

    50th  0.0121 0.0392 0.4499 0.0000 0.0000 0.0000 0.0687 0.4422 

h=52 (1 year) 2008:01-2009:12 75th  0.0235 0.8430 0.0000 0.0000 0.0000 0.0000 0.1570 0.0000 

    95th  0.0433 0.8677 0.0000 0.0000 0.0000 0.0000 0.0100 0.1223 



 

 

 

 

 

 

 

 

 

 

 

Table 5 Number of forecast errors below a given forecast error  (U.S. dollar/Great Britain pound exchange rates) 
Forecast horizon Forecast period Percentile Forecast 

error 

Mean Median AIC BIC PLS AIC 

weights 

BIC 

weights 

Bates - Granger 

weights 

Granger-

Ramanathan 

weights 

Quantile 

regression 

weights 

SDE Best 

h=1  50th 0.0100 78 82 82 82 82 82 82 80 81 84 84 

(1 week) 2007:01-2009:12 75th 0.0193 117 117 117 117 118 117 117 117 119 119 119 

    95th 0.0430 148 151 151 151 148 151 151 148 147 148 151 

h=26   50th 0.0125 65 65 65 65 65 64 64 64 62 67 67 

(6 months) 2007:07-2009:12 75th 0.0215 97 99 99 99 97 99 99 96 98 99 100 

    95th 0.0410 123 121 121 121 122 121 121 122 121 123 124 

h=52   50th 0.0121 52 54 54 54 53 54 54 53 54 55 56 

(1 year) 2008:01-2009:12 75th 0.0235 78 76 76 76 78 76 76 77 77 78 79 

    95th 0.0433 99 100 100 100 97 100 100 99 95 97 100 



 

 

 

Table 6 Average weights of optimal forecast combinations for the whole distribution (U.S. dollar/Great Britain pound exchange rates) 

Forecast horizon Forecast period AR ARMA LSTAR MS-AR ARNN RW SETAR 

h=1 (1 week) 2007:01-2009:12 0.3182 0.1317 0.0000 0.0598 0.2984 0.0228 0.1691 

h=26 (6 months) 2007:07-2009:12 0.6070 0.0875 0.0201 0.0722 0.0007 0.0269 0.1857 

h=52 (1 year) 2008:01-2009:12 0.4848 0.0973 0.1248 0.0000 0.0025 0.0676 0.2230 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 7 Optimal forecast combinations with the forecasts between 2010 and 2012      

Panel A: Forecast combinations for the Japanese yen/U.S. dollar exchange rates      

        WEIGHTS 

Forecast horizon Forecast period Percentile Forecast 

error 

AR ARMA LSTAR MS-AR ARNN RW SETAR 

h=1  50th  0.0079 0.9658 0.0000 0.0000 0.0000 0.0000 0.0000 0.0342 

(1 week) 2010:01-2012:12 75th  0.0138 0.7616 0.0000 0.0000 0.0000 0.0000 0.1534 0.0850 

    95th  0.0249 0.0152 0.0000 0.0000 0.0000 0.0000 0.0000 0.9848 

h=26   50th  0.0078 0.2703 0.0000 0.0000 0.0000 0.0000 0.1201 0.6096 

(6 months) 2010:07-2012:12 75th  0.0134 0.1688 0.0000 0.0000 0.0213 0.0000 0.1171 0.6928 

    95th  0.0235 0.4868 0.0000 0.3840 0.0000 0.0000 0.1292 0.0000 

h=52   50th  0.0077 0.9849 0.0000 0.0000 0.0000 0.0000 0.0151 0.0000 

(1 year) 2011:01-2012:12 75th  0.0125 0.6097 0.0000 0.0000 0.0000 0.0000 0.0895 0.3008 

    95th  0.0270 0.1500 0.0000 0.8000 0.0000 0.0000 0.0000 0.0500 

Panel B: Forecast combinations for the U.S. dollar/Great Britain pound exchange rates      

        WEIGHTS 

Forecast horizon Forecast period  Percentile Forecast 

error 

AR ARMA LSTAR MS-AR ARNN RW SETAR 

h=1  50th  0.0091 0.4338 0.0000 0.0000 0.0000 0.0000 0.0210 0.5453 

(1 week) 2010:01-2012:12 75th  0.0143 0.0087 0.0000 0.0000 0.0000 0.0000 0.0535 0.9379 

    95th  0.0193 0.5766 0.0000 0.0000 0.0000 0.0000 0.0830 0.3404 

h=26   50th  0.0082 0.9333 0.0000 0.0000 0.0000 0.0000 0.0029 0.0639 

(6 months) 2010:07-2012:12 75th  0.0124 0.0917 0.0000 0.0000 0.0000 0.0000 0.0000 0.9083 

    95th  0.0191 0.1651 0.0000 0.0000 0.0000 0.0000 0.0000 0.8349 

h=52   50th  0.0080 0.4293 0.0000 0.5628 0.0000 0.0000 0.0079 0.0000 

(1 year) 2011:01-2012:12 75th  0.0128 0.9294 0.0000 0.0000 0.0000 0.0000 0.0056 0.0650 

    95th  0.0190 0.2762 0.0000 0.0000 0.0000 0.0000 0.0000 0.7238 

 



Table 8 Distribution of forecasts errors with the forecast combination/selection methods in the period between 2010 and 2012 

Panel A: Number of forecast errors below a given forecast error (Japanese yen/U.S. dollar exchange rates) 
Forecast horizon Forecast period Percentile Forecast 

error 

Mean Median AIC BIC PLS AIC 

weights 

BIC 

weights 

Bates - 

Granger 

weights 

Granger-

Ramanathan 

weights 

Quantile 

regression 

weights 

SDE Best 

h=1  50th  0.0079 78 79 79 79 78 79 79 79 78 81 81 

(1 week) 2010:01-2012:12 75th  0.0138 117 113 113 113 113 113 113 115 113 114 121 

  95th  0.0249 148 147 147 147 147 147 147 147 147 148 150 

h=26  50th  0.0078 65 67 67 67 67 67 67 66 67 67 67 

(6 months) 2010:07-2012:12 75th  0.0134 97 97 95 95 96 95 95 100 101 101 102 

  95th  0.0235 123 122 122 122 121 122 122 122 119 119 124 

h=52  50th  0.0077 52 55 55 55 55 55 55 52 53 56 56 

(1 year) 2011:01-2012:12 75th  0.0125 78 78 78 78 78 78 78 78 78 79 79 

  95th  0.0270 99 100 100 100 100 100 100 99 99 100 101 

Panel B: Number of forecast errors below a given forecast error (U.S. dollar/Great Britain pound exchange rates) 
Forecast horizon Forecast period Percentile Forecast 

error 

Mean Median AIC BIC PLS AIC 

weights 

BIC 

weights 

Bates - 

Granger 

weights 

Granger-

Ramanathan 

weights 

Quantile 

regression 

weights 

SDE Best 

h=1  50th  0.0091 78 79 79 79 79 79 79 80 75 83 83 

(1 week) 2010:01-2012:12 75th  0.0143 117 122 122 122 123 122 122 122 119 124 125 

  95th  0.0193 148 146 146 146 147 146 146 147 140 147 149 

h=26  50th  0.0082 65 72 72 72 72 72 72 70 70 73 73 

(6 months) 2010:07-2012:12 75th  0.0124 97 96 96 96 96 95 95 97 95 99 101 

  95th  0.0191 123 123 123 123 123 123 123 122 123 123 124 

h=52  50th  0.0080 52 57 57 57 57 57 57 54 56 58 58 

(1 year) 2011:01-2012:12 75th  0.0128 78 83 83 83 82 83 83 82 83 83 84 

  95th  0.0190 99 100 100 100 100 100 100 100 99 101 101 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 Average weights of optimal forecast combinations for forecast period of 2010-2012    

Panel A: Japanese yen/U.S. dollar exchange rate        

Forecast horizon Forecast period AR ARMA LSTAR MS-AR ARNN RW SETAR 

h=1 (1 week) 2010:01-2012:12 0.4238 0.0083 0.2968 0.0099 0.0576 0.0181 0.1854 

h=26 (6 months) 2010:07-2012:12 0.5660 0.0000 0.1539 0.0382 0.0000 0.0277 0.2143 

h=52 (1 year) 2011:01-2012:12 0.6325 0.0000 0.0020 0.0752 0.0037 0.0238 0.2599 

Panel B: U.S. dollar/Great Britain pound exchange rate       

Forecast horizon Forecast period AR ARMA LSTAR MS-AR ARNN RW SETAR 

h=1 (1 week) 2010:01-2012:12 0.6254 0.0142 0.0354 0.0266 0.0000 0.0109 0.2875 

h=26 (6 months) 2010:07-2012:12 0.6634 0.0499 0.0135 0.0011 0.0000 0.0065 0.2656 

h=52 (1 year) 2011:01-2012:12 0.5840 0.0196 0.0000 0.0777 0.0097 0.0110 0.2981 



 

Table 10 Out-of sample performance of forecast combination/selection methods (U.S. dollar/Great Britain pound exchange rates) 
Forecast 

horizon 

Forecast period Percentile Forecast 

error 

Mean Median AIC BIC PLS AIC 

weights 

BIC 

weights 

Bates - 

Granger 

weights 

Granger-

Ramanathan 

weights 

SDE Best 

h=1  50th  0.0064 52 49 48 48 49 50 47 47 47 53 

(1 week) 2013:01-2014:12 75th  0.0094 78 73 73 73 73 72 73 74 74 79 

    95th  0.0189 99 98 98 98 98 98 98 99 99 100 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 11 Number of squared forecast errors below a given squared forecast error level (Japanese yen/U.S. dollar exchange rates) 
Forecast 

horizon 

Forecast period Percentile Forecast error Mean Median AIC BIC PLS AIC weights BIC weights Bates - 

Granger 

weights 

Granger-

Ramanathan 

weights 

Quantile 

regression 

weights 

SDE Best 

   50th  0.000118 78 73 73 73 72 73 73 77 69 72 88 

h=1 2007:01-2009:12 75th  0.000327 117 120 119 119 119 119 119 118 119 117 120 

    95th  0.001325 148 148 148 148 149 148 148 150 149 149 150 

 



 

Figure 1: Cumulative distribution functions with the average and SDE forecast combinations for Japanese yen/U.S. dollar exchange rate 

 

 

Figure 2: Cumulative distribution functions with the EW and SDE forecast combinations for U.S. dollar/British pound exchange rate 
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