314 research outputs found

    A transient relativistic radio jet from Cygnus X-1

    Full text link
    We report the first observation of a transient relativistic jet from the canonical black hole candidate, Cygnus X-1, obtained with the Multi-Element Radio-Linked Interferometer Network (MERLIN). The jet was observed in only one of six epochs of MERLIN imaging of the source during a phase of repeated X-ray spectral transitions in 2004 Jan--Feb, and this epoch corresponded to the softest 1.5-12 keV X-ray spectrum. With only a single epoch revealing the jet, we cannot formally constrain its velocity. Nevertheless, several lines of reasoning suggest that the jet was probably launched 0.5-4.0 days before this brightening, corresponding to projected velocities of 0.2c < v_app < 1.6c, and an intrinsic velocity of > 0.3c. We also report the occurrence of a major radio flare from Cyg X-1, reaching a flux density of ~120 mJy at 15 GHz, and yet not associated with any resolvable radio emission, despite a concerted effort with MERLIN. We discuss the resolved jet in terms of the recently proposed 'unified model' for the disc-jet coupling in black hole X-ray binaries, and tentatively identify the 'jet line' for Cyg X-1. The source is consistent with the model in the sense that a steady jet appears to persist initially when the X-ray spectrum starts softening, and that once the spectral softening is complete the core radio emission is suppressed and transient ejecta / shock observed. However, there are some anomalies, and Cyg X-1 clearly does not behave like a normal black hole transient in progressing to the canonical soft / thermal state once the ejection event has happened.Comment: Accepted for publication in MNRA

    Jet-disc coupling through a common energy reservoir in the black hole XTE J1118+480

    Full text link
    We interpret the rapid correlated UV/optical/ X-ray variability of XTE J1118+480 as a signature of the coupling between the X-ray corona and a jet emitting synchrotron radiation in the optical band. We propose a scenario in which the jet and the X-ray corona are fed by the same energy reservoir where large amounts of accretion power are stored before being channelled into either the jet or the high energy radiation. This time dependent model reproduces the main features of the rapid multi-wavelength variability of XTE J1118+480. Assuming that the energy is stored in the form of magnetic field, we find that the required values of the model parameters are compatible with both a patchy corona atop a cold accretion disc and a hot thick inner disc geometry. The range of variability timescales for the X-ray emitting plasma are consistent with the dynamical times of an accretion flow between 10 and 100 Schwarzschild radii. On the other hand, the derived range of timescales associated with the dissipation in the jet extends to timescales more than 10 times larger, confirming the suggestion that the generation of a powerful outflow requires large scale coherent poloidal field structures. A strong requirement of the model is that the total jet power should be at least a few times larger than the observed X-ray luminosity. This would be consistent with the overall low radiative efficiency of the source. We present independent arguments showing that the jet probably dominates the energetic output of all accreting black holes in the low-hard state.Comment: 14 pages, 2 figures, to appear in MNRA

    Big Bang Nucleosynthesis with Gaussian Inhomogeneous Neutrino Degeneracy

    Full text link
    We consider the effect of inhomogeneous neutrino degeneracy on Big Bang nucleosynthesis for the case where the distribution of neutrino chemical potentials is given by a Gaussian. The chemical potential fluctuations are taken to be isocurvature, so that only inhomogeneities in the electron chemical potential are relevant. Then the final element abundances are a function only of the baryon-photon ratio η\eta, the effective number of additional neutrinos ΔNν\Delta N_\nu, the mean electron neutrino degeneracy parameter ξˉ\bar \xi, and the rms fluctuation of the degeneracy parameter, σξ\sigma_\xi. We find that for fixed η\eta, ΔNν\Delta N_\nu, and ξˉ\bar \xi, the abundances of helium-4, deuterium, and lithium-7 are, in general, increasing functions of σξ\sigma_\xi. Hence, the effect of adding a Gaussian distribution for the electron neutrino degeneracy parameter is to decrease the allowed range for η\eta. We show that this result can be generalized to a wide variety of distributions for ξ\xi.Comment: 9 pages, 3 figures, added discussion of neutrino oscillations, altered presentation of figure

    Integrated Sensing and Communications for IoT: Synergies with Key 6G Technology Enablers

    Full text link
    The Internet of Things (IoT) and wireless generations have been evolving simultaneously for the past few decades. Built upon wireless communication and sensing technologies, IoT networks are usually evaluated based on metrics that measure the device ability to sense information and effectively share it with the network, which makes Integrated Sensing and Communication (ISAC) a pivotal candidate for the sixth-generation (6G) IoT standards. This paper reveals several innovative aspects of ISAC from an IoT perspective in 6G, empowering various modern IoT use cases and key technology enablers. Moreover, we address the challenges and future potential of ISAC-enabled IoT, including synergies with Reconfigurable Intelligent Surfaces (RIS), Artificial Intelligence (AI), and key updates of ISAC-IoT in 6G standardization. Furthermore, several evolutionary concepts are introduced to open future research in 6G ISAC-IoT, including the interplay with Non-Terrestrial Networks (NTN) and Orthogonal Time-Frequency Space (OTFS) modulation.Comment: 7 pages, 6 figure

    Patient enablement requires physician empathy: a cross-sectional study of general practice consultations in areas of high and low socioeconomic deprivation in Scotland

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; Patient 'enablement' is a term closely aligned with 'empowerment' and its measurement in a general practice consultation has been operationalised in the widely used patient enablement instrument (PEI), a patient-rated measure of consultation outcome. However, there is limited knowledge regarding the factors that influence enablement, particularly the effect of socio-economic deprivation. The aim of the study is to assess the factors influencing patient enablement in GP consultations in areas of high and low deprivation.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methods&lt;/b&gt; A questionnaire study was carried out on 3,044 patients attending 26 GPs (16 in areas of high socio-economic deprivation and 10 in low deprivation areas, in the west of Scotland). Patient expectation (confidence that the doctor would be able to help) was recorded prior to the consultation. PEI, GP empathy (measured by the CARE Measure), and a range of other measures and variables were recorded after the consultation. Data analysis employed multi-level modelling and multivariate analyses with the PEI as the dependant variable.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt; Although numerous variables showed a univariate association with patient enablement, only four factors were independently predictive after multilevel multivariate analysis; patients with multimorbidity of 3 or more long-term conditions (reflecting poor chronic general health), and those consulting about a long-standing problem had reduced enablement scores in both affluent and deprived areas. In deprived areas, emotional distress (GHQ-caseness) had an additional negative effect on enablement. Perceived GP empathy had a positive effect on enablement in both affluent and deprived areas. Maximal patient enablement was never found with low empathy.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt; Although other factors influence patient enablement, the patients' perceptions of the doctors' empathy is of key importance in patient enablement in general practice consultations in both high and low deprivation settings

    Energetics of a black hole: constraints on the jet velocity and the nature of the X-ray emitting region in Cyg X-1

    Full text link
    We investigate the energetics of the jet and X-ray corona of Cyg X-1. We show that the current estimates of the jet power obtained from Halpha and [O III] measurements of the optical nebula surrounding the X-ray source allow one to constrain the bulk velocity of the jet. It is definitely relativistic (v >0.1c) and most probably in the range (0.3-0.8)c. The exact value of the velocity depends on the accretion efficiency. These constraints are obtained independently of, and are consistent with, previous estimates of the jet bulk velocity based on radio measurements. We then show that the X-ray emission does not originate in the jet. Indeed, the energy budget does not allow the corona to be ejected to infinity at relativistic speed. Rather, either a small fraction of the corona escapes to infinity, or the ejection velocity of the corona is vanishingly low. Although the corona could constitute the jet launching region, it cannot be identified with the jet itself. We discuss the consequences for various X-ray emission models.Comment: 9 pages, 4 figures, to appear in MNRA

    Black hole accretion disks in the canonical low-hard state

    Full text link
    Stellar-mass black holes in the low-hard state may hold clues to jet formation and basic accretion disk physics, but the nature of the accretion flow remains uncertain. A standard thin disk can extend close to the innermost stable circular orbit, but the inner disk may evaporate when the mass accretion rate is reduced. Blackbody-like continuum emission and dynamically-broadened iron emission lines provide independent means of probing the radial extent of the inner disk. Here, we present an X-ray study of eight black holes in the low-hard state. A thermal disk continuum with a colour temperature consistent with LT4L \propto T^{4} is clearly detected in all eight sources, down to 5×104LEdd\approx5\times10^{-4}L_{Edd}. In six sources, disk models exclude a truncation radius larger than 10rg. Iron-ka fluorescence line emission is observed in half of the sample, down to luminosities of 1.5×103LEdd\approx1.5\times10^{-3}L_{Edd}. Detailed fits to the line profiles exclude a truncated disk in each case. If strong evidence of truncation is defined as (1) a non-detection of a broad iron line, {\it and} (2) an inner disk temperature much cooler than expected from the LT4{\rm L} \propto {\rm T}^{4} relation, none of the spectra in this sample offer strong evidence of disk truncation. This suggests that the inner disk may evaporate at or below 1.5×103LEdd\approx1.5\times10^{-3}L_{Edd}.Comment: Accepted for publication in MNRAS, 20 pages, 18 figure

    The MeV spectral tail in Cyg X-1 and optically-thin emission of jets

    Full text link
    We study the average X-ray and soft gamma-ray spectrum of Cyg X-1 in the hard spectral state, using data from INTEGRAL. We compare these results with those from CGRO, and find a good agreement. Confirming previous studies, we find the presence of a high-energy MeV tail beyond a thermal-Comptonization spectrum; however, the tail is much softer and weaker than that recently published by Laurent et al. In spite of this difference, the observed high-energy tail could still be due to the synchrotron emission of the jet of Cyg X-1, as claimed by Laurent et al. To test this possibility, we study optically-thin synchrotron and self-Compton emission from partially self-absorbed jets. We develop formalisms for calculating both emission of the jet base (which we define here as the region where the jet starts its emission) and emission of the entire jet. We require the emission to match that observed at the turnover energy. The optically thin emission is dominated by that from the jet base, and it has to become self-absorbed within it at the turnover frequency. We find this implies the magnetic field strength at the jet base of B_0 prop. to z_0^4, where z_0 is the distance of the base from the black-hole centre. The value of B_0 is then constrained from below by the condition that the self-Compton emission is below an upper limit in the GeV range, and from above by the condition that the Poynting flux does not exceed the jet kinetic power. This yields B_0 of the order of ~10^4 G and the location of the jet base at ~10^3 gravitational radii. Using our formalism, we find the MeV tail can be due to jet synchrotron emission, but this requires the electron acceleration at a rather hard power-law index, p~1.3-1.6. For acceleration indices of p> 2, the amplitude of the synchrotron component is much below that of MeV tail, and its origin is likely to be due to hybrid Comptonization in the accretion flow.Comment: MNRAS, in press, 13 page

    Superorbital variability of X-ray and radio emission of Cyg X-1. I. Emission anisotropy of precessing sources

    Full text link
    We study theoretical interpretations of the 150-d (superorbital) modulation observed in X-ray and radio emission of Cyg X-1 in the framework of models connecting this phenomenon to precession. Precession changes the orientation of the emission source (either disc or jet) relative to the observer. This leads to emission modulation due to an anisotropic emission pattern of the source or orientation-dependent amount of absorbing medium along the line of sight or both. We consider, in particular, anisotropy patterns of blackbody-type emission, thermal Comptonization in slab geometry, jet/outflow beaming, and absorption in a coronal-type medium above the disc. We then fit these models to the data from the RXTE/ASM, CGRO/BATSE, and the Ryle and Green Bank radio telescopes, and find relatively small best-fit angles between the precession and orbital planes, ~10-20 degrees. The thermal Comptonization model for the X-ray emission explains well the observed decrease of the variability amplitude from 1 to 300 keV as a result of a reduced anisotropy of the emission due to multiple scatterings. Our modeling also yield the jet bulk velocity of ~(0.3-0.5)c, which is in agreement with the previous constraint from the lack of an observed counterjet and lack of short-term X-ray/radio correlations.Comment: 10 pages, 9 figures and 2 tables, accepted to MNRA
    corecore