10 research outputs found

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    NR1H3 p.Arg415Gln Is Not Associated to Multiple Sclerosis Risk

    No full text
    A recent study by Wang et al. (2016a) claims that the low-frequency variant NR1H3 p.Arg415Gln is sufficient to cause multiple sclerosis in certain individuals and determines a patient's likelihood of primary progressive disease. We sought to replicate this finding in the International MS Genetics Consortium (IMSGC) patient collection, which is 13-fold larger than the collection of Wang et al. (2016a), but we find no evidence that this variant is associated with either MS or disease subtype. Wang et al. (2016a) also report a common variant association in the region, which we show captures the association the IMSGC reported in 2013. Therefore, we conclude that the reported low-frequency association is a false positive, likely generated by insufficient sample size. The claim of NR1H3 mutations describing a Mendelian form of MS-of which no examples exist-can therefore not be substantiated by data. This Matters Arising paper is in response to Wang et al. (2016a), published in Neuron. See also the related Matters Arising paper by Minikel and MacArthur (2016) and the response by Wang et al. (2016b), published in this issue

    NR1H3 p.Arg415Gln Is Not Associated to Multiple Sclerosis Risk

    No full text
    A recent study by Wang et al. (2016a) claims that the low-frequency variant NR1H3 p.Arg415Gln is sufficient to cause multiple sclerosis in certain individuals and determines a patient's likelihood of primary progressive disease. We sought to replicate this finding in the International MS Genetics Consortium (IMSGC) patient collection, which is 13-fold larger than the collection of Wang et al. (2016a), but we find no evidence that this variant is associated with either MS or disease subtype. Wang et al. (2016a) also report a common variant association in the region, which we show captures the association the IMSGC reported in 2013. Therefore, we conclude that the reported low-frequency association is a false positive, likely generated by insufficient sample size. The claim of NR1H3 mutations describing a Mendelian form of MS-of which no examples exist-can therefore not be substantiated by data. This Matters Arising paper is in response to Wang et al. (2016a), published in Neuron. See also the related Matters Arising paper by Minikel and MacArthur (2016) and the response by Wang et al. (2016b), published in this issue.publisher: Elsevier articletitle: NR1H3 p.Arg415Gln Is Not Associated to Multiple Sclerosis Risk journaltitle: Neuron articlelink: http://dx.doi.org/10.1016/j.neuron.2016.09.052 associatedlink: http://dx.doi.org/10.1016/j.neuron.2016.09.054 associatedlink: http://dx.doi.org/10.1016/j.neuron.2016.09.053 associatedlink: http://dx.doi.org/10.1016/j.neuron.2016.04.039 content_type: article copyright: © 2016 Elsevier Inc.status: publishe

    NR1H3 p.Arg415Gln Is Not Associated to Multiple Sclerosis Risk

    No full text
    A recent study by Wang et al. (2016a) claims that the low-frequency variant NR1H3 p.Arg415Gln is sufficient to cause multiple sclerosis in certain individuals and determines a patient's likelihood of primary progressive disease. We sought to replicate this finding in the International MS Genetics Consortium (IMSGC) patient collection, which is 13-fold larger than the collection of Wang et al. (2016a), but we find no evidence that this variant is associated with either MS or disease subtype. Wang et al. (2016a) also report a common variant association in the region, which we show captures the association the IMSGC reported in 2013. Therefore, we conclude that the reported low-frequency association is a false positive, likely generated by insufficient sample size. The claim of NR1H3 mutations describing a Mendelian form of MS-of which no examples exist-can therefore not be substantiated by data. This Matters Arising paper is in response to Wang et al. (2016a), published in Neuron. See also the related Matters Arising paper by Minikel and MacArthur (2016) and the response by Wang et al. (2016b), published in this issue

    Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part III: Bipolar Disorder

    Get PDF
    Genome scans of bipolar disorder (BPD) have not produced consistent evidence for linkage. The rank-based genome scan meta-analysis (GSMA) method was applied to 18 BPD genome scan data sets in an effort to identify regions with significant support for linkage in the combined data. The two primary analyses considered available linkage data for “very narrow” (i.e., BP-I and schizoaffective disorder–BP) and “narrow” (i.e., adding BP-II disorder) disease models, with the ranks weighted for sample size. A “broad” model (i.e., adding recurrent major depression) and unweighted analyses were also performed. No region achieved genomewide statistical significance by several simulation-based criteria. The most significant P values (<.01) were observed on chromosomes 9p22.3-21.1 (very narrow), 10q11.21-22.1 (very narrow), and 14q24.1-32.12 (narrow). Nominally significant P values were observed in adjacent bins on chromosomes 9p and 18p-q, across all three disease models on chromosomes 14q and 18p-q, and across two models on chromosome 8q. Relatively few BPD pedigrees have been studied under narrow disease models relative to the schizophrenia GSMA data set, which produced more significant results. There was no overlap of the highest-ranked regions for the two disorders. The present results for the very narrow model are promising but suggest that more and larger data sets are needed. Alternatively, linkage might be detected in certain populations or subsets of pedigrees. The narrow and broad data sets had considerable power, according to simulation studies, but did not produce more highly significant evidence for linkage. We note that meta-analysis can sometimes provide support for linkage but cannot disprove linkage in any candidate region

    Stroke genetics informs drug discovery and risk prediction across ancestries

    No full text
    corecore