31 research outputs found

    On the underparts colouration of a population of the Barn Owl Tyto alba guttata in southern Lower Saxony

    Get PDF
    Bei 318 brĂŒtenden Schleiereulen wurde die UnterseitenfĂ€rbung festgehalten. Die Verteilung auf 5 FĂ€rbungstypen ist bei den Weibchen unspektakulĂ€r und hat ihren deutlichen Schwerpunkt beim Typ „guttata“. Bei den MĂ€nnchen sind nicht nur die helleren Typen generell hĂ€ufiger, sondern es gibt einen besonderen Schwerpunkt bei den sehr hellen. Dies könnte Folge einer Einwanderungswelle von Westen sein.The underparts colouration of 318 breeding Barn Owls was investigated. In the female, the distribution among 5 colouration types is non spectacular and has its predominant peak at the type “guttata”. In the male, not only the lighter types (“alba”) are more frequent but there is a second peak in the very light type. The authors speculate that this could reflect immigration from the west

    Circumstances of mate change for a second brood in the Barn Owl Tyto alba

    Get PDF
    Schleiereulen-Weibchen prĂŒfen offensichtlich, vielleicht sogar regelmĂ€ĂŸig, vor der Entscheidung fĂŒr eine Zweitbrut mit ihrem bisherigen MĂ€nnchen, ob es eine bessere Alternative gibt (better option hypothesis). Sie können sich dann fĂŒr oder gegen eine neue Partnerschaft entscheiden. Scheidungs-Zweitbruten können auch sehr dicht beim ersten Brutplatz des Weibchens stattfinden (ca. 40 m Abstand). Das neue MĂ€nnchen einer Scheidungs-Zweitbrut folgt gelegentlich seinem Weibchen in die NĂ€he von dessen Erstbrutplatz. Die aktive Rolle des Weibchens bei der Initiierung einer Zweitbrut wird bestĂ€tigt.Before deciding for a second brood with their previous male barn owl females obviously regularly test whether there is an alternative (better option hypothesis). They then may decide in favour or against a new partnership. Divorce-second-broods may take place very close to the first breeding site of the female (distance of about 40 m). Occasionally the new male of a divorcesecond-brood follows his mate to the vicinity of her first breeding site. The active role of the female in initiating a second brood is affirmed. For full text translation see www.kniprath-barn-owl.d

    Concept of the Munich/Augsburg Consortium Precision in Mental Health for the German Center of Mental Health

    Get PDF
    The Federal Ministry of Education and Research (BMBF) issued a call for a new nationwide research network on mental disorders, the German Center of Mental Health (DZPG). The Munich/Augsburg consortium was selected to participate as one of six partner sites with its concept “Precision in Mental Health (PriMe): Understanding, predicting, and preventing chronicity.” PriMe bundles interdisciplinary research from the Ludwig-Maximilians-University (LMU), Technical University of Munich (TUM), University of Augsburg (UniA), Helmholtz Center Munich (HMGU), and Max Planck Institute of Psychiatry (MPIP) and has a focus on schizophrenia (SZ), bipolar disorder (BPD), and major depressive disorder (MDD). PriMe takes a longitudinal perspective on these three disorders from the at-risk stage to the first-episode, relapsing, and chronic stages. These disorders pose a major health burden because in up to 50% of patients they cause untreatable residual symptoms, which lead to early social and vocational disability, comorbidities, and excess mortality. PriMe aims at reducing mortality on different levels, e.g., reducing death by psychiatric and somatic comorbidities, and will approach this goal by addressing interdisciplinary and cross-sector approaches across the lifespan. PriMe aims to add a precision medicine framework to the DZPG that will propel deeper understanding, more accurate prediction, and personalized prevention to prevent disease chronicity and mortality across mental illnesses. This framework is structured along the translational chain and will be used by PriMe to innovate the preventive and therapeutic management of SZ, BPD, and MDD from rural to urban areas and from patients in early disease stages to patients with long-term disease courses. Research will build on platforms that include one on model systems, one on the identification and validation of predictive markers, one on the development of novel multimodal treatments, one on the regulation and strengthening of the uptake and dissemination of personalized treatments, and finally one on testing of the clinical effectiveness, utility, and scalability of such personalized treatments. In accordance with the translational chain, PriMe’s expertise includes the ability to integrate understanding of bio-behavioral processes based on innovative models, to translate this knowledge into clinical practice and to promote user participation in mental health research and care

    Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation

    Get PDF
    A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24 % and -35 % for particles with dry diameters > 50 and > 120 nm, as well as -36 % and -34 % for CCN at supersaturations of 0.2 % and 1.0 %, respectively. However, they seem to behave differently for particles activating at very low supersaturations (<0.1 %) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N-3 (number concentration of particles with dry diameters larger than 3 nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2 % (CCN0.2) compared to that for N-3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120 nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40 % during winter and 20 % in summer. In contrast to the large spread in simulated aerosol particle and CCN number concentrations, the CDNC derived from simulated CCN spectra is less diverse and in better agreement with CDNC estimates consistently derived from the observations (average NMB -13 % and -22 % for updraft velocities 0.3 and 0.6 m s(-1), respectively). In addition, simulated CDNC is in slightly better agreement with observationally derived values at lower than at higher updraft velocities (index of agreement 0.64 vs. 0.65). The reduced spread of CDNC compared to that of CCN is attributed to the sublinear response of CDNC to aerosol particle number variations and the negative correlation between the sensitivities of CDNC to aerosol particle number concentration (partial derivative N-d/partial derivative N-a) and to updraft velocity (partial derivative N-d/partial derivative w). Overall, we find that while CCN is controlled by both aerosol particle number and composition, CDNC is sensitive to CCN at low and moderate CCN concentrations and to the updraft velocity when CCN levels are high. Discrepancies are found in sensitivities partial derivative N-d/partial derivative N-a and partial derivative N-d/partial derivative w; models may be predisposed to be too "aerosol sensitive" or "aerosol insensitive" in aerosol-cloud-climate interaction studies, even if they may capture average droplet numbers well. This is a subtle but profound finding that only the sensitivities can clearly reveal and may explain intermodel biases on the aerosol indirect effect.Peer reviewe

    Aerosol indirect effects

    Get PDF
    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (tau a) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. cloud droplet number concentration (N d) compares relatively well to the satellite data at least over the ocean. The relationship between (tau a) and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and tau a as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld–tau a relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between tau a and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - tau a relationship show a strong positive correlation between tau a and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of tau a, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of −1.5±0.5Wm−2. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clearand cloudy-sky forcings with estimates of anthropogenic tau a and satellite-retrieved Nd–tau a regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of −0.4±0.2Wm−2 and a cloudy-sky (aerosol indirect effect) estimate of −0.7±0.5Wm−2, with a total estimate of −1.2±0.4Wm−2

    Evaluation of Global Simulations of Aerosol Particle and Cloud Condensation Nuclei Number, with Implications for Cloud Droplet Formation

    Get PDF
    A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters > 50 and > 120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (< 0.1%) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3 nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN(0.2)) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer

    Clinical and virological characteristics of hospitalised COVID-19 patients in a German tertiary care centre during the first wave of the SARS-CoV-2 pandemic: a prospective observational study

    Get PDF
    Purpose: Adequate patient allocation is pivotal for optimal resource management in strained healthcare systems, and requires detailed knowledge of clinical and virological disease trajectories. The purpose of this work was to identify risk factors associated with need for invasive mechanical ventilation (IMV), to analyse viral kinetics in patients with and without IMV and to provide a comprehensive description of clinical course. Methods: A cohort of 168 hospitalised adult COVID-19 patients enrolled in a prospective observational study at a large European tertiary care centre was analysed. Results: Forty-four per cent (71/161) of patients required invasive mechanical ventilation (IMV). Shorter duration of symptoms before admission (aOR 1.22 per day less, 95% CI 1.10-1.37, p < 0.01) and history of hypertension (aOR 5.55, 95% CI 2.00-16.82, p < 0.01) were associated with need for IMV. Patients on IMV had higher maximal concentrations, slower decline rates, and longer shedding of SARS-CoV-2 than non-IMV patients (33 days, IQR 26-46.75, vs 18 days, IQR 16-46.75, respectively, p < 0.01). Median duration of hospitalisation was 9 days (IQR 6-15.5) for non-IMV and 49.5 days (IQR 36.8-82.5) for IMV patients. Conclusions: Our results indicate a short duration of symptoms before admission as a risk factor for severe disease that merits further investigation and different viral load kinetics in severely affected patients. Median duration of hospitalisation of IMV patients was longer than described for acute respiratory distress syndrome unrelated to COVID-19
    corecore