163 research outputs found

    Photoinhibition of Intact Attached Leaves of C 3

    Full text link

    The first super-Earth Detection from the High Cadence and High Radial Velocity Precision Dharma Planet Survey

    Get PDF
    The Dharma Planet Survey (DPS) aims to monitor about 150 nearby very bright FGKM dwarfs (within 50 pc) during 2016−-2020 for low-mass planet detection and characterization using the TOU very high resolution optical spectrograph (R≈\approx100,000, 380-900nm). TOU was initially mounted to the 2-m Automatic Spectroscopic Telescope at Fairborn Observatory in 2013-2015 to conduct a pilot survey, then moved to the dedicated 50-inch automatic telescope on Mt. Lemmon in 2016 to launch the survey. Here we report the first planet detection from DPS, a super-Earth candidate orbiting a bright K dwarf star, HD 26965. It is the second brightest star (V=4.4V=4.4 mag) on the sky with a super-Earth candidate. The planet candidate has a mass of 8.47±0.47MEarth\pm0.47M_{\rm Earth}, period of 42.38±0.0142.38\pm0.01 d, and eccentricity of 0.04−0.03+0.050.04^{+0.05}_{-0.03}. This RV signal was independently detected by Diaz et al. (2018), but they could not confirm if the signal is from a planet or from stellar activity. The orbital period of the planet is close to the rotation period of the star (39−-44.5 d) measured from stellar activity indicators. Our high precision photometric campaign and line bisector analysis of this star do not find any significant variations at the orbital period. Stellar RV jitters modeled from star spots and convection inhibition are also not strong enough to explain the RV signal detected. After further comparing RV data from the star's active magnetic phase and quiet magnetic phase, we conclude that the RV signal is due to planetary-reflex motion and not stellar activity.Comment: 13 pages, 17 figures, Accepted for publication in MNRA

    Marijuana use and DNA methylation-based biological age in young adults

    Get PDF
    BACKGROUND: Marijuana is the third most commonly used drug in the USA and efforts to legalize it for medical and recreational use are growing. Despite the increase in use, marijuana\u27s effect on aging remains understudied and understanding the effects of marijuana on molecular aging may provide novel insights into the role of marijuana in the aging process. We therefore sought to investigate the association between cumulative and recent use of marijuana with epigenetic age acceleration (EAA) as estimated from blood DNA methylation. RESULTS: A random subset of participants from The Coronary Artery Risk Development in Young Adults (CARDIA) Study with available whole blood at examination years (Y) 15 and Y20 underwent epigenomic profiling. Four EAA estimates (intrinsic epigenetic age acceleration, extrinsic epigenetic age acceleration, PhenoAge acceleration, and GrimAge acceleration) were calculated from DNA methylation levels measured at Y15 and Y20. Ever use and cumulative marijuana-years were calculated from the baseline visit to Y15 and Y20, and recent marijuana use (both any and number of days of use in the last 30 days) were calculated at Y15 and Y20. Ever use of marijuana and each additional marijuana-year were associated with a 6-month (P \u3c 0.001) and a 2.5-month (P \u3c 0.001) higher average in GrimAge acceleration (GAA) using generalized estimating equations, respectively. Recent use and each additional day of recent use were associated with a 20-month (P \u3c 0.001) and a 1-month (P \u3c 0.001) higher GAA, respectively. A statistical interaction between marijuana-years and alcohol consumption on GAA was observed (P = 0.011), with nondrinkers exhibiting a higher GAA (ÎČ = 0.21 [95% CI 0.05, 0.36], P = 0.008) compared to heavy drinkers (ÎČ = 0.05 [95% CI - 0.09, 0.18], P = 0.500) per each additional marijuana-year. No associations were observed for the remaining EAA estimates. CONCLUSIONS: These findings suggest cumulative and recent marijuana use are associated with age-related epigenetic changes that are related to lifespan. These observed associations may be modified by alcohol consumption. Given the increase in use and legalization, these findings provide novel insight on the effect of marijuana use on the aging process as captured through blood DNA methylation

    The first super-Earth detection from the high cadence and high radial velocity precision Dharma Planet Survey

    Get PDF
    The Dharma Planet Survey (DPS) aims to monitor about 150 nearby very bright FGKM dwarfs (within 50 pc) during 2016–2020 for low-mass planet detection and characterization using the TOU very high resolution optical spectrograph (⁠R≈100000⁠, 380–900 nm). TOU was initially mounted to the 2-m Automatic Spectroscopic Telescope at Fairborn Observatory in 2013–2015 to conduct a pilot survey, then moved to the dedicated 50-inch automatic telescope on Mt. Lemmon in 2016 to launch the survey. Here, we report the first planet detection from DPS, a super-Earth candidate orbiting a bright K dwarf star, HD 26965. It is the second brightest star (V = 4.4 mag) on the sky with a super-Earth candidate. The planet candidate has a mass of 8.47 ± 0.47MEarth, period of 42.38 ± 0.01 d, and eccentricity of 0.04+0.05−0.03⁠. This radial velocity (RV) signal was independently detected by DĂ­az et al., but they could not confirm if the signal is from a planet or stellar activity. The orbital period of the planet is close to the rotation period of the star (39–44.5 d) measured from stellar activity indicators. Our high precision photometric campaign and line bisector analysis of this star do not find any significant variations at the orbital period. Stellar RV jitters modelled from star-spots and convection inhibition are also not strong enough to explain the RV signal detected. After further comparing RV data from the star’s active magnetic phase and quiet magnetic phase, we conclude that the RV signal is due to planetary-reflex motion and not stellar activity

    Actionable Patient Safety Solutions (APSS) #3A: Medication Errors

    Get PDF
    A medication error is a preventable event in any healthcare setting that may lead to inappropriate medication use while in the control of the healthcare professional or patient, ultimately leading to patient harm and/or death. Medication errors can be classified into five categories: 1) wrong drug, 2) wrong dose, 3) wrong route, 4) wrong frequency and/or 5) wrong patient

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo
    • 

    corecore