86 research outputs found

    Molecular basis of a novel adaptation to hypoxic-hypercapnia in a strictly fossorial mole

    Get PDF
    Background: Elevated blood O2 affinity enhances survival at low O2 pressures, and is perhaps the best known and most broadly accepted evolutionary adjustment of terrestrial vertebrates to environmental hypoxia. This phenotype arises by increasing the intrinsic O2 affinity of the hemoglobin (Hb) molecule, by decreasing the intracellular concentration of allosteric effectors (e.g., 2,3-diphosphoglycerate; DPG), or by suppressing the sensitivity of Hb to these physiological cofactors. Results: Here we report that strictly fossorial eastern moles (Scalopus aquaticus) have evolved a low O2 affinity, DPG-insensitive Hb - contrary to expectations for a mammalian species that is adapted to the chronic hypoxia and hypercapnia of subterranean burrow systems. Molecular modelling indicates that this functional shift is principally attributable to a single charge altering amino acid substitution in the β-type δ-globin chain (δ136Gly→Glu) of this species that perturbs electrostatic interactions between the dimer subunits via formation of an intra-chain salt-bridge with δ82Lys. However, this replacement also abolishes key binding sites for the red blood cell effectors Cl-, lactate and DPG (the latter of which is virtually absent from the red cells of this species) at δ82Lys, thereby markedly reducing competition for carbamate formation (CO2 binding) at the δ-chain N-termini. Conclusions: We propose this Hb phenotype illustrates a novel mechanism for adaptively elevating the CO2 carrying capacity of eastern mole blood during burst tunnelling activities associated with subterranean habitation

    Molecular basis of a novel adaptation to hypoxic-hypercapnia in a strictly fossorial mole

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated blood O<sub>2 </sub>affinity enhances survival at low O<sub>2 </sub>pressures, and is perhaps the best known and most broadly accepted evolutionary adjustment of terrestrial vertebrates to environmental hypoxia. This phenotype arises by increasing the intrinsic O<sub>2 </sub>affinity of the hemoglobin (Hb) molecule, by decreasing the intracellular concentration of allosteric effectors (e.g., 2,3-diphosphoglycerate; DPG), or by suppressing the sensitivity of Hb to these physiological cofactors.</p> <p>Results</p> <p>Here we report that strictly fossorial eastern moles (<it>Scalopus aquaticus</it>) have evolved a low O<sub>2 </sub>affinity, DPG-insensitive Hb - contrary to expectations for a mammalian species that is adapted to the chronic hypoxia and hypercapnia of subterranean burrow systems. Molecular modelling indicates that this functional shift is principally attributable to a single charge altering amino acid substitution in the β-type δ-globin chain (δ136Gly→Glu) of this species that perturbs electrostatic interactions between the dimer subunits via formation of an intra-chain salt-bridge with δ82Lys. However, this replacement also abolishes key binding sites for the red blood cell effectors Cl<sup>-</sup>, lactate and DPG (the latter of which is virtually absent from the red cells of this species) at δ82Lys, thereby markedly reducing competition for carbamate formation (CO<sub>2 </sub>binding) at the δ-chain N-termini.</p> <p>Conclusions</p> <p>We propose this Hb phenotype illustrates a novel mechanism for adaptively elevating the CO<sub>2 </sub>carrying capacity of eastern mole blood during burst tunnelling activities associated with subterranean habitation.</p

    Molecular dissection of Wnt3a-Frizzled8 interaction reveals essential and modulatory determinants of Wnt signaling activity

    Get PDF
    Background: Wnt proteins are a family of secreted signaling molecules that regulate key developmental processes in metazoans. The molecular basis of Wnt binding to Frizzled and LRP5/6 co-receptors has long been unknown due to the lack of structural data on Wnt ligands. Only recently, the crystal structure of the Wnt8-Frizzled8-cysteine-rich-domain (CRD) complex was solved, but the significance of interaction sites that influence Wnt signaling has not been assessed. Results: Here, we present an extensive structure-function analysis of mouse Wnt3a in vitro and in vivo. We provide evidence for the essential role of serine 209, glycine 210 (site 1) and tryptophan 333 (site 2) in Fz binding. Importantly, we discovered that valine 337 in the site 2 binding loop is critical for signaling without contributing to binding. Mutations in the presumptive second CRD binding site (site 3) partly abolished Wnt binding. Intriguingly, most site 3 mutations increased Wnt signaling, probably by inhibiting Wnt-CRD oligomerization. In accordance, increasing amounts of soluble Frizzled8-CRD protein modulated Wnt3a signaling in a biphasic manner. Conclusions: We propose a concentration-dependent switch in Wnt-CRD complex formation from an inactive aggregation state to an activated high mobility state as a possible modulatory mechanism in Wnt signaling gradients

    Isolation of a Complex Formed Between Acinetobacter baumannii HemA and HemL, Key Enzymes of Tetrapyrroles Biosynthesis

    Get PDF
    Plants, algae and most bacteria synthesize 5-aminolevulinic acid (ALA), the universal precursor of tetrapyrroles such as heme, chlorophyll and coenzyme B12, by a two-step transformation involving the NADPH-dependent glutamyl-tRNA reductase (HemA), which reduces tRNA-bound glutamate to glutamate-1-semialdehyde (GSA), and the pyridoxamine 5′-phosphate-dependent glutamate-1-semialdehyde-2,1-aminomutase (HemL), responsible for the isomerization of GSA into ALA. Since GSA is a very unstable compound at pH values around neutrality, the formation of a HemA-HemL complex has been proposed to occur, allowing for direct channeling of this intermediate from HemA to HemL. Experimental evidence of the formation of this complex has been obtained with the enzymes from Escherichia coli and Chlamydomonas reinhardtii. However, its isolation has never been attained, probably because HemA is degraded when intracellular heme accumulates. In this work, we devised a co-expression and co-purification strategy of HemA and HemL from Acinetobacter baumannii, which allowed the isolation of the HemA-HemL complex. Our results indicate that HemA is stabilized when co-expressed with HemL. The addition of citrate throughout the expression and purification procedure further promotes the formation of the HemA-HemL complex, which can be isolated in fair amount for functional and structural studies. This work lays the bases for a rational design of HemA-HemA inhibitors to be developed as antibacterial agents against A. baumannii, a multidrug resistant opportunistic pathogen responsible for a broad range of severe nosocomial infections

    Taking down the FLAG! How Insect Cell Expression Challenges an Established Tag-System

    Get PDF
    In 1988 the preceding journal of Nature Biotechnology, Bio/Technology, reported a work by Hopp and co-workers about a new tag system for the identification and purification of recombinant proteins: the FLAG-tag. Beside the extensively used hexa-his tag system the FLAG-tag has gained broad popularity due to its small size, its high solubility, the presence of an internal Enterokinase cleavage site, and the commercial availability of high-affinity anti-FLAG antibodies. Surprisingly, considering the heavy use of FLAG in numerous laboratories world-wide, we identified in insect cells a post-translational modification (PTM) that abolishes the FLAG-anti-FLAG interaction rendering this tag system ineffectual for secreted proteins. The present publication shows that the tyrosine that is part of the crucial FLAG epitope DYK is highly susceptible to sulfation, a PTM catalysed by the enzyme family of Tyrosylprotein-Sulfo-transferases (TPSTs). We showed that this modification can result in less than 20% of secreted FLAG-tagged protein being accessible for purification questioning the universal applicability of this established tag system

    Biophysical analysis of a lethal laminin alpha-1 mutation reveals altered self-interaction

    Get PDF
    Laminins are key basement membrane molecules that influence several biological activities and are linked to a number of diseases. They are secreted as heterotrimeric proteins consisting of one α, one β, and one γ chain, followed by their assembly into a polymer-like sheet at the basement membrane. Using sedimentation velocity, dynamic light scattering, and surface plasmon resonance experiments, we studied self-association of three laminin (LM) N-terminal fragments α-1 (hLM α-1 N), α-5 (hLM α-5 N) and β-3 (hLM β-3 N) originating from the short arms of the human laminin αβγ heterotrimer. Corresponding studies of the hLM α-1 N C49S mutant, equivalent to the larval lethal C56S mutant in zebrafish, have shown that this mutation causes enhanced self-association behavior, an observation that provides a plausible explanation for the inability of laminin bearing this mutation to fulfill functional roles in vivo, and hence for the deleterious pathological consequences of the mutation on lens function

    A Structural Analysis of Proteinaceous Nanotube Cavities and Their Applications in Nanotechnology

    No full text
    Protein nanotubes offer unique properties to the materials science field that allow them to fulfill various functions in drug delivery, biosensors and energy storage. Protein nanotubes are chemically diverse, modular, biodegradable and nontoxic. Furthermore, although the initial design or repurposing of such nanotubes is highly complex, the field has matured to understand underlying chemical and physical properties to a point where applications are successfully being developed. An important feature of a nanotube is its ability to bind ligands via its internal cavities. As ligands of interest vary in size, shape and chemical properties, cavities have to be able to accommodate very specific features. As such, understanding cavities on a structural level is essential for their effective application. The objective of this review is to present the chemical and physical diversity of protein nanotube cavities and highlight their potential applications in materials science, specifically in biotechnology
    corecore