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Research articleMolecular basis of a novel adaptation to 
hypoxic-hypercapnia in a strictly fossorial mole
Kevin L Campbell*1, Jay F Storz2, Anthony V Signore1, Hideaki Moriyama2, Kenneth C Catania3, Alexander P Payson4, 
Joseph Bonaventura4, Jörg Stetefeld5 and Roy E Weber6

Abstract
Background: Elevated blood O2 affinity enhances survival at low O2 pressures, and is perhaps the best known and 
most broadly accepted evolutionary adjustment of terrestrial vertebrates to environmental hypoxia. This phenotype 
arises by increasing the intrinsic O2 affinity of the hemoglobin (Hb) molecule, by decreasing the intracellular 
concentration of allosteric effectors (e.g., 2,3-diphosphoglycerate; DPG), or by suppressing the sensitivity of Hb to these 
physiological cofactors.

Results: Here we report that strictly fossorial eastern moles (Scalopus aquaticus) have evolved a low O2 affinity, DPG-
insensitive Hb - contrary to expectations for a mammalian species that is adapted to the chronic hypoxia and 
hypercapnia of subterranean burrow systems. Molecular modelling indicates that this functional shift is principally 
attributable to a single charge altering amino acid substitution in the β-type δ-globin chain (δ136Gly→Glu) of this 
species that perturbs electrostatic interactions between the dimer subunits via formation of an intra-chain salt-bridge 
with δ82Lys. However, this replacement also abolishes key binding sites for the red blood cell effectors Cl-, lactate and 
DPG (the latter of which is virtually absent from the red cells of this species) at δ82Lys, thereby markedly reducing 
competition for carbamate formation (CO2 binding) at the δ-chain N-termini.

Conclusions: We propose this Hb phenotype illustrates a novel mechanism for adaptively elevating the CO2 carrying 
capacity of eastern mole blood during burst tunnelling activities associated with subterranean habitation.

Background
Among mammals that are adapted to hypoxic environ-
ments, only subterranean species are also obliged to
breathe air with elevated concentrations of carbon diox-
ide [1]. Within this select group, the 25 or so species of
fossorial moles (Family Talpidae) are among the few that
live exclusively underground. These small (70-130 g)
insectivores favour moist, invertebrate-rich substrates to
excavate extensive closed-burrow systems. Due to the
impeded gas exchange of damp soils with surface air,
these animals are chronically exposed to hypoxic and
hypercapnic environments (14.3% O2 and 5.5% CO2 have
been recorded within mole tunnels; [2]). The high meta-
bolic costs of burrowing, in terms of O2 consumption and
CO2 production, are exacerbated by the obligate re-

breathing of expired air while tunnelling, and may there-
fore require adaptive modifications in hemoglobin (Hb)
function. Not surprisingly, whole blood O2 affinity of the
European mole, Talpa europaea, is much higher (its half
saturation O2 pressure or P50 is 10-15 mm Hg lower) than
those of terrestrial mammals of similar size [1,3,4]. This
feature has been attributed to a reduced affinity of Euro-
pean mole Hb for 2,3-diphosphoglycerate (DPG) [4,5],
which binds to a cluster of positively charged residues
between the β-type chains and stabilizes the low affinity
(deoxy) conformation of the molecule. However, it is not
known whether other fossorial members of the family
Talpidae possess similar specializations to the subterra-
nean environment. This question is of interest in light of
recent evidence which suggests that New World (Scalo-
pini) and Old World (Talpini) moles have convergently
invaded the subterranean habitat [[6,7], but see [8]; Fig-
ure 1].
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In order to assess the functional and evolutionary adap-
tations of mole Hbs, and their mechanistic basis, we
determined the coding sequences of the adult-expressed
α-and β-type globin chains of coast mole (Scapanus orar-
ius) and eastern mole (Scalopus aquaticus), two closely
related, strictly fossorial species that are endemic to
Western and Eastern North America, respectively, and
we investigated the ligand-binding properties of their Hb
components. Based on unexpected findings for S. aquati-
cus Hb, we also measured oxygen-binding properties of
whole blood for both species and the semi-aquatic star-
nosed mole (Condylura cristata). To gauge whether the
distinctive oxygenation properties of eastern mole Hb are
accompanied by complementary or compensatory physi-
ological adjustments, we also measured hematological
and muscle biochemical properties of the two fossorial
species.

Results
Hb-O2 binding properties

Both gel electrophoresis and isoelectric focusing (IEF;
inset of Figure 2) revealed the presence of two major
isoHb components (the tetrameric Hbs of each compo-
nent possess distinct α-type globin chains; see below) in
all individuals examined (n = 3 coast moles; n = 4 eastern
moles), where the Hb I:Hb II ratio approximated 60:40
and 35:65, respectively. In addition to these major com-
ponents, one of the eastern mole specimens possessed a
minor cathodic Hb component that represented ~5% of
the hemolysate and exhibited oxygen-binding properties
similar to those of the major components (data not
shown). Preparative IEF revealed relatively high isoelec-
tric points (the pH at which the protein carries a net neu-
tral charge) for the CO-bound Hb components of both
species at 5°C (inset of Figure 2).

Oxygen equilibration curves revealed striking func-
tional differences between the Hbs of the two species
(Figure 2), with 'stripped' (cofactor-free) Hbs of the east-
ern mole exhibiting P50's (13.8 and 14.8 mm Hg for Hbs I
and Hb II, respectively, at 37°C, pH 7.2) that are nearly
three-fold higher than those of the coast mole (P50 = 5.3
and 5.1 mm Hg, respectively). Eastern mole Hbs also
exhibited slightly lower chloride sensitivities (Δlog P50/
Δlog [Cl-]; Table 1), though the Hbs of both species
showed similar cooperativity coefficients (Figure 2). Sig-
nificantly, the O2-affinity of coast mole Hbs was sharply
reduced in the presence of saturating concentrations of
DPG, a trait not observed in eastern mole Hbs (Table 1,
Figure 2). Even under saturating DPG concentrations the
P50 of coast mole Hbs (18.3-19.7 mm Hg at pH 7.2)
remained lower than those of eastern mole Hbs in the
absence of this organophosphate (22.2-26.0 mm Hg; Fig-
ure 2). Similarly, oxygenation enthalpies (ΔH) of coast
mole Hbs at pH 7.2 and in 0.1 M Cl- media (-7.6 to -9.7 kJ
mol-1 O2; Table 1) were lower than those of eastern moles
(-10.3 to -13.7 kJ mol-1), though both were low compared
to human Hb A at pH 7.4 (-41.0 kJ mol-1; [9]).

O2-binding properties of whole blood

In accordance with the observed differences in the oxy-
gen affinity of coast vs. eastern mole Hb components in
the presence of allosteric effectors (Figure 2), the P50 of
freshly drawn coast mole blood (17.7 mm Hg at 36°C) was
substantially lower than that from the eastern mole (28.8
mm Hg), while that of the amphibious star-nosed mole
was intermediate (22.5 mm Hg; Figure 3, Table 2). How-
ever, whole blood pH was notably lower in eastern mole
(pH = 7.38) than in the coast and star-nosed moles (7.60
and 7.55, respectively). Even when corrected to pH 7.4, a
clear difference in whole-blood O2-affinity of these two

Figure 1 Phylogenetic hypothesis of the Family Talpidae. (A) Shi-
nohara et al. 2003 [6], (B) Motokawa 2004 [7], and (C) Whidden 2000 [8]. 
Line colours refer to the habitats exploited by each: high-alpine terres-
trial (black), semi-aquatic (blue), fossorial (brown) and semi-fossorial 
(green). Note that all topologies suggest that the lineage leading to-
wards present-day eastern moles arose following an extensive period 
of fossorial evolution.
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Figure 2 Values of PO2 and Hill's cooperativity coefficient at half oxygen saturation (P50 and n50) for the two major isohemoglobin compo-

nents of (A) eastern and (B) coast moles at 37°C, and their pH dependence in the absence and presence of added Cl- (0.1 M) and 2,3-DPG 
(DPG/Hb4 ratio > 50). Upper right insets: diagrams of isoelectric focusing column at the end of focusing illustrating the relative abundance of the in-
dividual hemoglobin components and their isoelectric points at 5°C.

Table 1: Heterotropic effects at half-saturation (P50) for coast and eastern mole hemoglobin

Eastern mole Coast mole

Hb I Hb II Hb I Hb II

Δlog P50/Δlog [Cl-]1,2 0.21 0.25 0.31 0.33

Δlog P50± 2.5 mM DPG1,3 0.02 0.02 0.26 0.23

Δlog P50/ΔpH4

25°C, 0.1 M Cl- -0.57 -0.61 -0.55 -0.62

37°C, 'stripped' -0.40 -0.41 -0.32 -0.44

37°C, 0.1 M Cl- -0.51 -0.52 -0.54 -0.59

37°C, 0.1 M Cl- + 2.5 mM DPG -0.63 -0.73 -0.86 -0.78

Oxygenation enthalpy; ΔH (kJ mol-1 O2)5 -13.7 -10.3 -9.7 -7.6

1pH = 7.2
2[DPG] = 0 mM
3[Cl-] = 0.1 M
4over pH range 6.9-7.4; PCO2 = 0 mm Hg
5[Cl-] = 0.1 M; [DPG] = 0 mM; pH = 7.2
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fossorial species was evident (P50 = 21.9 vs. 26.9 mm Hg,
respectively). The CO2 Bohr coefficients (determined by
measurements whereby the pH is changed by varying
PCO2) of blood from coast mole (-0.52) and star-nosed
mole (-0.40) were within the typical mammalian range (-
0.39 to -0.62; [10]), while that of the eastern mole was
unusually high (-0.78; Table 2). Consistent with our Hb
data, the blood P50 values of both fossorial species
showed low temperature sensitivities, with the Hb-oxy-
genation reaction being less exothermic in coast mole
(ΔH=-1.0 kJ mol-1 O2; Table 2) than in the eastern mole (-
8.3 kJ mol-1). Surprisingly, blood-O2 affinity of the semi-
aquatic star-nosed mole was more strongly governed by
temperature (inset of Figure 3), as reflected by its high
oxygenation enthalpy (-29.9 kJ mol-1 O2; Table 2) relative
to the fossorial mole species.

Prominent differences were also detected in specific
hematological parameters of the two fossorial species,
with the most significant being the > 15 fold lower DPG
levels in the erythrocytes of eastern mole relative to coast
mole (Table 3). Tissue myoglobin concentration was also
consistently lower in eastern moles (by 10-20%), although
this difference was only significant for hindlimb muscles.
Conversely, hematocrit and Hb concentrations were
20.5% and 10.3% higher, respectively, in eastern mole
blood than in coast mole blood (Table 3).

Identification of Hb isoforms
One β-like and two α-like globin cDNAs were obtained
from three separate eastern moles, while single α- and β-

like globin cDNAs were obtained from three coast moles
examined (Figure 4). A mass spectrometic analysis of
eastern mole Hb components revealed the presence of
two distinct α-globin sequences that match the two
known HBA cDNA sequences ('α1' and 'α2'; Figure 4).
The analysis revealed the presence of a single β-like
globin sequence that matched the eastern mole HBD (δ)
cDNA sequence (see below). These results confirm that
the two Hb isoforms of eastern mole have different α-
chain subunits that are distinguished by three amino acid
substitutions: 48Leu→Met, 49Lys→Ser, and
121Met→Val (α1→α2 in each case). The mass spectrom-
etry analysis of coast mole Hb also revealed highly signif-
icant matches to coast mole cDNA sequences. However,
since the analysis revealed no evidence for structurally
distinct Hb isoforms, the distinct bands in the isoelectric
focusing gels likely reflect some form of in vivo post-
translational modification. The electrophoretic mobility
patterns of the two fractions (inset of Figure 2B) are con-
sistent with a deamidation reaction, whereby a portion of
the amide side-chain moieties of specific Asn or Gln resi-
dues of Hb are converted to carboxyl groups [11,12].
Based on the primary sequences of the coast mole globin
chains (Figure 4), the most probable scenario is deamida-
tion of α60Asn→Asp, which is adjacent to two residues
(α58His and α59Gly) that are often associated with this
non-enzymatic reaction [11,12].

Phylogenetic analyses of mole β-like genes
Phylogenetic surveys of the β-globin gene family have
revealed that, in most mammalian species, the β-type
globin chains of adult Hb are encoded by one or more
copies of the HBB (β) gene [13,14]. However, in the euli-
potyphlan (moles, shrews, hedgehogs and solenodons)
species that have been examined to date (Eurasian shrew,
Sorex araneus, and African pygmy hedgehog, Atelerix
albiventris) the β-type globin chains of adult Hb are
encoded by multiple copies of the paralogous HBD (δ)
gene [13]. Because recent molecular phylogenies now
suggest that Sorex and Atelerix are sister taxa and are
closely related to moles [15], it is still unknown whether
HBD supplanted the HBB gene before or after the shrew/
hedgehog common ancestor diverged from the stem lin-
eage of talpid moles.

We used phylogenetic reconstructions of coding
sequences and intron 2 sequences to determine whether
the β-like globin genes of eastern mole and coast mole are
orthologous to the HBB or HBD genes of other eutherian
mammals. Phylogenetic reconstructions based on coding
sequence indicated that orthologous relationships may be
partly obscured by a history of concerted evolution,
mediated by unequal crossing-over or interparalog gene
conversion (a form of nonreciprocal recombination
between duplicated genes) [13]. For example, a history of
gene conversion is indicated by the fact that the human

Figure 3 Oxygen equilibration curves of freshly drawn coast (j) 
eastern (Њ) and star-nosed mole (d) blood at 36°C and a PCO2 of 
38 mm Hg. Inset: The effect of temperature on the half-saturation pres-
sure (P50) of whole blood of these three species.
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HBB gene is more similar to the human HBD gene than it
is to the orthologous HBB gene in rabbit or armadillo
(Figure 5A). By contrast, the phylogeny based on intron 2
sequence shows that the β-like globin genes of all eulipo-
typhlan species examined - together with the HBD genes
of human, rabbit, and armadillo - form a well-supported
monophyletic group with high bootstrap support (Figure
5B). This set of relationships indicates that the adult-
expressed β-like globin genes of moles are orthologous to
the HBD genes of other eutherian mammals. Thus, the
HBD gene appears to have supplanted the HBB gene in
the common ancestor of shrews, hedgehogs and moles.

Discussion
The pioneering work of Bunn [16] demonstrated that
mammalian Hbs fall into two discrete categories based on
their ligand-binding properties. Most species have Hbs
with intrinsically high O2 affinity that is markedly
reduced in the red cell by physiological concentrations of
DPG (4-10 mM l-1 RBC), which stabilizes the tense
(deoxy) state of Hb by electrostatic binding within a cat-
ionic pocket (formed by β1Val, β2His, β82Lys and
β143His) between the β-chains [17]. Conversely, the Hbs
of feloids, ruminants and two species of lemur exhibit low
O2 affinities and respond only weakly to organophos-
phates [17], which moreover occur in low concentrations
in the red cells [16]. The β-type chains of these animals
share two features without exception: the substitution of
a hydrophilic residue with a hydrophobic residue at β2
[18], and the presence of β5Ala. The latter residue is
thought to give the first turn of helix A more flexibility
[19], allowing the modified N-termini to be drawn closer
to the hydrophobic cavity between the β chains and thus
mimicking DPG binding [18].

Though δ5Ala is present in eastern (and coast) moles,
contrary to our expectations, all known phosphate-bind-
ing sites are conserved in the β-type δ-chains of moles
(Figure 4). Significantly, however, eastern moles possess a
novel δ136Gly→Glu replacement that introduces two
anionic residues into the positively charged central cavity
of the Hb tetramer. This position is essentially invariant
among mammals. However, a rare Hb mutant in humans,
Hb Hope, is characterized by a comparable charge alter-
ing replacement (β136Gly→Asp) and, interestingly,
exhibits functional properties similar to that of eastern
mole Hb [20,21]. It has been proposed that the altered
behaviour of Hb Hope arises from the formation of an
intra-chain salt bridge between the carboxyl (COO-)
group of β136Asp and the charged α-amino group (NH2

+)
of β1Val [22], thus deleting a pair of DPG binding sites
and stabilizing the T-state molecule via the newly estab-
lished ionic linkage [21,23,24]. However, the electropho-
retic properties of Hb Hope remain unchanged at pH 8.6
[25], where the N-terminius is expected to be deproto-
nated (its pKa is ~6.4-6.8; [26,27]) and the β1Val-
β136Asp salt-bridge thus destabilized. Additionally, given
that this proposed interaction deletes a maximum of two
(of seven) docking sites for DPG, the near complete abol-
ishment of organophosphate binding to Hb Hope is diffi-
cult to explain. Indeed, Hb variants that lack DPG
binding sites at the N-terminus (e.g., Hb Raleigh
β1Val→Ac-Ala; [28]), at β2 (e.g., Hb Fukuoka
β2His→Tyr, Hb Okayama His→Gln; [29]) and at β143
(e.g., Hb Little Rock, β143His→Gln; [30]) only exhibit
modest reductions in DPG sensitivity. These inconsisten-
cies suggest another molecular mechanism may underlie
the drastic functional changes found in Hb Hope and the
eastern mole protein.

Table 2: Respiratory characteristics of eastern, coast and star-nosed mole whole blood

36°C 36°C ΔlogP50/ΔpH
4 32°C 40°C ΔH5(kJ mol-1O2) Δlog P50/ΔT

PCO2 = 38 mm Hg PCO2 = 38 mm Hg PCO2 = 38 mm Hg PCO2 = 38 mm Hg

pH P50
1 Pd

2 n50
3 pH P50 Pd n50 P50 n50 P50 n50

Eastern 
mole

7.36 28.8 21.9 2.76 7.76 14.1 10.1 2.54 -0.78 25.3 2.78 31.0 2.71 -8.3 0.011

Coast mole 7.58 17.7 13.6 2.84 8.48 6.1 4.2 2.44 -0.52 16.9 2.85 19.3 2.82 -1.0 0.008

Star-nosed 
mole

7.56 22.5 17.1 2.76 8.61 8.0 6.0 2.86 -0.40 17.3 2.95 26.6 2.90 -29.9 0.023

1P50 (mm Hg) = PO2 corresponding to 50% oxygen saturation
2Pd (mm Hg) = P50 × ((n50-1)/(n50+1))1/n50; represents arterial PO2 at which oxygen offloading is maximal [41]
3n50 = Hill coefficient; slope of log (%oxyHb/%deoxyHb) versus log PO2
4CO2-Bohr effect; pH varies by CO2 titration
5Overall heat of oxygenation.



Campbell et al. BMC Evolutionary Biology 2010, 10:214
http://www.biomedcentral.com/1471-2148/10/214

Page 6 of 14

In accord with this suggestion, our structural model
illustrates that the carboxyl side chain of δ136Glu forms a
stable salt bridge with the nearby ε-amino group of
δ82Lys (Figure 6). This association is consistent with the
observed low electrophoretic mobility of Hb Hope at pH
8.6 [25], as the high pKa of the lysine side chain (~10.5)
would stabilize the strong β136Asp-β82Lys bond over a
wide pH range. Importantly, the δ136Gly→Glu replace-
ment in eastern mole Hb (and the β136Gly→Asp change
in Hb Hope) is also expected to neutralize the strong cat-
ionic charge of the δ82 lysyl side chain (which normally
projects directly into the central cavity). This substitution
should reduce electrostatic repulsion between the dimer
subunits [19,31], thereby reducing the intrinsic O2 affinity
of the R-state protein. Consistent with this expectation,
the intrinsic O2 affinity of eastern mole Hb is ~2.8-fold
lower than that of coast mole Hb in the physiological pH
range (Figure 2). Finally, the strongly suppressed DPG
sensitivities of human Hbs with residue replacements at
β82 (e.g., Hb Rahere β82Lys→Thr and Hb Providence
β82Lys→Asn/Asp; [32,33]) are qualitatively similar in
magnitude to that of eastern mole Hb (Figure 2, Table 1).
In this regard, it is notable that eastern moles also possess
an unusual δ3Leu→Met substitution in the N-terminal
region of the δ-chains (Figure 4). Aided by the increased

flexibility provided by residues δ5Ala and δ130Phe [19],
the longer side-chain of this residue (which points inter-
nally towards δ133Met) may promote an increased inter-
action of the β-type subunit A-helix with its hydrophobic
core, and further inhibit DPG binding (an analogous resi-
due change found in human fetal Hb, γ3Leu→Phe, is
implicated in reducing the affinity of this respiratory pro-
tein for O2 and DPG [34]). Finally, the eastern mole δ-
globin chains possess an additional, potentially signifi-
cant replacement that introduces a polar hydroxyl group
(δ128Ala→Thr) into the α1δ1 interface. This site is typi-
cally invariant in mammalian Hbs [22,35] and may be
responsible for the larger P50 difference between cofactor-
free Hbs of eastern mole and coast mole (2.6-2.9 fold at
37°C; Figure 2) than the 1.8-fold change caused by the
β136Gly→Asp substitution of Hb Hope at this same tem-
perature [20].

The chloride sensitivities of both major Hb compo-
nents of the eastern mole (0.21-0.25) are about 30% less
than those of coast mole Hbs (Table 1). Hb Hope also
exhibits a markedly lowered Cl- effect relative to Hb A
[21], providing additional support for the view that this
characteristic arises from the loss of two anion binding
sites in the eastern mole protein (i.e., between δ1Val and

Table 3: Hematological parameters, skeletal muscle myoglobin concentrations and buffering capacities (± 1 SE) of coast 
and eastern moles (samples sizes are indicated in brackets)

Variable Eastern mole Coast mole

Hematocrit (%) 56.4 ± 1.3 (7)† 46.8 ± 2.0 (11)1

Hemoglobin (g dL-1) 19.2 ± 0.7 (7) 17.4 ± 0.8 (11)1

RBC (106/mm3) 12.58 ± 0.32 (3) 10.48 (1)

MCV (μ3) 46.0 ± 1.3 (3) 42.6 (1)

MCH (pg) 15.3 ± 0.6 (3) 13.5 (1)

MCHC (g L-1) 333 ± 7 (3) 318 (1)

2,3-DPG (mM L-1 RBC) 0.45 ± 0.06 (4)† 7.09 ± 0.20 (3)

Myoglobin content (mg g-1 wet tissue)

Heart 8.34 ± 0.38 (6) 9.24 ± 0.28 (7)1

Forelimb 10.98 ± 0.64 (6) 12.10 ± 0.25 (10)1

Hindlimb 8.56 ± 0.21 (6)† 10.61 ± 0.56 (10)1

Buffering capacity, β (Slykes)*

Forelimb 43.86 ± 3.29 (6) 37.33 ± 2.10 (10)1

Hindlimb 44.99 ± 5.54 (6) 38.94 ± 1.77 (10)1

Plasma pH (pHe) 7.42 ± 0.01 (6) ---

Intraerythrocytic pH (pHi) 7.21 ± 0.00 (6) ---

Plasma osmolarity (mOsm) 333 ± 2 (6) ---

†Interspecific differences are significant (P < 0.05)
*1 Slyke = μmoles of base required to titrate the pH of 1 g of wet muscle by 1 pH unit
1data from [45]
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δ82Lys of each dimer; see Figure 6A). However, it is of
note that the P50 of coast mole Hb I exposed to saturating
DPG in 0.1 M Cl- media was higher than values obtained
when either of these anions were present alone (Figure 3).
This observation suggests that mole Hbs possess an extra
chloride-binding site (with respect to human Hb A) that
does not overlap with the DPG binding site. This infer-
ence is moreover consistent with the numerically low
oxygenation enthalpies (see below) of both mole Hbs in
0.1 M Cl- media (Table 1).

The 7.3 kJ mol-1 O2 difference in overall oxygenation
enthalpy of eastern mole whole blood relative to coast
mole blood (Table 2) aligns well with the reduced exo-
thermic contributions conferred by both the loss of Cl-
binding sites between δ1Val and δ82Lys (-3.4 kJ mol-1 O2;
Table 1), and by a lack of DPG binding (-3.1 kJ mol-1 O2;
[36]) to eastern mole Hb. Interestingly, the numerical ΔH
values for whole blood (-1.0 to -8.3 kJ mol-1 O2; Table 2)
and purified Hbs (-7.6 to -13.7 kJ mol-1; Table 1) of coast
and eastern moles, respectively, are notably lower than
those reported for both whole blood (-16.8 and -14.4 kJ
mol-1, respectively [37]) and the Hb fractions (-14.0 and -
15.0 kJ mol-1, respectively [9]) of 'cold-adapted' musk-ox
and reindeer. Given that possession of blood with numer-
ically low oxygenation enthalpies helps to ensure ade-
quate O2 delivery to cool peripheral tissues of these
Arctic mammals [37], and that subterranean environ-

ments are generally moderate and thermally buffered
from climatic extremes, what might account for the
occurrence of this characteristic in the fossorial species
(Figure 3, Table 2) but not in the (northerly distributed)
semi-aquatic star-nosed mole? By mandating that blood-
O2 affinity decreases as temperature increases, the exo-
thermic character of the Hb oxygenation reaction also
dictates that O2 uptake is compromised at high tempera-
ture. Unlike most fossorial mammals, talpid moles are
powerful forelimb diggers that possess a large muscle
mass surrounding the thoracic cavity. Consequently, we
propose that the negligible thermal sensitivity of mole
blood may minimize impairment of O2 loading at the
lungs during exercise-induced hyperthermia while bur-

Figure 4 Alignment of mole α- and δ-globin chains. Amino acid 
residues of coast and eastern moles were deduced from cDNA nucle-
otide sequences and are shown only at positions where they differ 
from those of European moles [5]. The underlined portions of each 
amino acid sequence denote the coverage of matched peptides in the 
mass spectrometry analysis (see text for details).

Figure 5 Phylogenetic analysis of mole β-like globin genes. Maxi-
mum likelihood phylograms depicting relationships among mamma-
lian β-like globin genes based on (A) 477 bp of coding sequence, and 
(B) 938 bp of intron 2. With the exception of the sequences from east-
ern mole (Scalopus aquaticus) and coast mole (Scapanus orarius), all β-
like globin sequences were retrieved from full genome assemblies (see 
text for details). Both trees demonstrate that the β-like globin genes of 
Scalopus and Scapanus are orthologous to the HBD genes of other 
mammals. Because mammals typically possess multiple tandemly du-
plicated copies of adult beta-like globin genes, we index each paralog 
with the symbol -T followed by a number that corresponds to the 5' to 
'3' linkage order. Pseudogene sequences are indicated by the suffix 
'ps'.
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Figure 6 Molecular models of the central cavity between the two δ-globin chains of (A) coast and (B) eastern mole hemoglobins. In coast 
mole deoxyhemoglobin, this cavity is lined by 8 cationic residues (δ1Val, δ2His, δ82Lys and δ143His) that form competitive binding sites for anions 
(Cl-, lactate and DPG) that stabilize the low O2 affinity T-state conformation. In eastern mole deoxyhemoglobin, the carboxylate side chain of δ136Glu 
forms a salt bridge with ε-amino group of δ82Lys of the same chain, thus deleting key docking sites for these anions, and reducing competition for 
CO2 binding (carbamate formation) at the N-terminus (δ1Val). This change is expected to markedly increase the maximal CO2 carrying capacity of east-
ern mole blood.
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rowing in hypoxic/hypercapnic soils. In fact, a high ΔH
(whereby oxygenation is strongly exothermic) would fur-
ther exacerbate O2 uptake potential since it increases the
heat liberated upon oxygenation in the lungs (which
accounts for up to 9% of metabolic heat production
assuming a ΔH value of -42 kJ mol-1 O2 [38]). The precise
mechanism underlying the extremely low oxygenation
enthalpy phenotype of coast/eastern mole blood is not
known, but may be associated with the presence of an
'additional' Cl- binding site in these species (see above).

The negligible effect of DPG on eastern mole Hb (Table
1), together with the finding that the erythrocytes of this
species are nearly devoid of DPG (Table 3), demonstrates
that this organophosphate does not have a central allos-
teric role in altering its blood O2 affinity. This reduced
plasticity may be expected to have potentially adverse
consequences since mammals with DPG-insensitive Hbs
are unable to modify their Hb-O2 binding attributes in
response to chronic changes in oxygen availability, and
hence "are likely to be more restricted physiologically"
than those whose oxygen affinity can be altered by
increasing/decreasing red cell DPG concentrations [39].
Indeed, it has long been appreciated that cats, cows and
sheep - which were subsequently discovered to possess
low affinity, DPG-insensitive Hbs [16] - do not adjust well
to high altitudes (hypoxia) [40]. Why then have eastern
moles, following an extensive period of fossorial evolu-
tion (see Figure 1), recently forsaken the potential for
adaptive modulation of their O2-binding affinity by phos-
phates [see e.g. [41]] and adopted a lower whole blood O2
affinity phenotype?

We hypothesize that the loss of DPG binding sharply
increases the carrying capacity of eastern mole Hb for the
metabolic end product CO2, thus providing a strong
selective advantage for this subterranean inhabitant.
Unlike carbon monoxide, CO2 does not bind to the heme
iron, but instead can interact with the uncharged α-
amino termini of the four globin chains to form carbam-
ino CO2

- [42,43]. In the absence of DPG (which competes
for this same binding site; see below), 70-80% of all car-
bamate formation under physiological conditions occurs
on the "high affinity" β-type subunits [23,27]. In human
Hb A, the carbamated β-chain N-termini are able to form
intra-chain ionic contacts with β82Lys [43], thus stabiliz-
ing the deoxy state molecule (lowering Hb-O2 affinity).
Conversely, the δ136Gly→Glu replacement in eastern
mole Hb (through its neutralization of the cationic charge
of δ82Lys) should disallow this δ1Val-δ82Lys interaction.
Indeed, in the absence of DPG, the CO2 effect (ΔP50/
Δ[CO2]) of the Hb Hope variant is 70% lower at a PCO2 of
40 mm Hg [23] than in human Hb A, and nearly 90%
lower at a PCO2 of 80 mm Hg [21].

Within the erythrocytes of systemic capillaries, CO2 is
largely hydrated to HCO3

- and H+ by carbonic anhydrase.
HCO3

- is subsequently exchanged with Cl- via the band 3
protein anion-exchanger, and transported in the plasma
[44]. However, band 3 protein anion-exchange appears to
be the rate-limiting step in the uptake and offloading of
CO2, potentially leading to exchange disequilibra in arter-
ies and veins during severe exercise [44]. In this respect,
the δ136Gly→Glu replacement in the eastern mole Hb
may be significant as it deletes binding sites for anions
(i.e., Cl-, lactate and DPG) between δ1Val and δ82Lys,
thus largely freeing the 'high CO2 affinity' δ-chain N-ter-
mini from competitive binding constraints. Accordingly,
this should result in enhanced binding of CO2 to eastern
mole Hb (two molecules per tetramer) while reducing
reliance on the anion-exchanger channel, thus increasing
the maximal CO2 carrying capacity of eastern mole
blood. In this regard, it should be noted that deoxygen-
ation-linked carbamate formation also liberates a proton
from the N-terminal α-amino group, which might be
expected to increase the Bohr effect of eastern mole Hb
(favouring O2 offloading). However, the Hb of this species
possesses an additional external histidyl residue (δ69His;
Figure 4) relative to other moles that should mitigate this
effect. Finally, by stabilizing the tense (deoxy) conforma-
tion of eastern mole Hb, the δ136Gly→Glu replacement
also confers a marked reduction in their whole-blood O2
affinity (a 5-6 mm Hg increase in their P50) compared to
coast (see Figure 3) and European moles [1,3,4]. This
reduced blood affinity would facilitate the offloading of
O2 at a relatively high PO2, leading to a large O2 gradient
between the plasma and tissues during burst tunnelling
activities. This shift may negatively impact the O2 satura-
tion of eastern mole blood during periods of hypoxia, but
is presumably mitigated by elevated blood hematocrit
(56.4%) and Hb concentrations (19.2 g dL-1; Table 3) com-
pared to coast (46.8% and 17.4 g dL-1; [45]), star-nosed
(50.5% and 17.2 g dL-1; [45]), Townsend's (46.4% and 16.9
g dL-1; [46]) and European moles (48.7% and 17.4 g dL-1;
[1]). Eastern moles thus present a novel category of Hbs
that appear to be specifically engineered for burst activi-
ties in gas-exchange impeded burrows.

Conclusions
The capacity of certain mammals to withstand low-oxy-
gen environments is thought to largely reside in the
enhanced binding affinity of their blood Hb for oxygen.
Here we document that following an extensive period of
subterranean evolution, the lineage leading to present day
eastern moles adopted a low oxygen affinity, DPG-insen-
sitive blood phenotype - providing the first demonstra-
tion of this phenomenon in any mammal chronically
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exposed to hypoxia (and only the fourth known origin of
this phenotype among mammals). The primary molecu-
lar mechanism involves an amino acid substitution
(δ136Gly→Glu) that forms a salt bridge with δ82Lys of
the same chain, thus deleting key binding sites for allos-
teric effectors (DPG, Cl- and lactate) between δ1Val-
δ82Lys and markedly reducing competition for CO2 bind-
ing (carbamate formation) at the N-terminus. Accord-
ingly, we suggest this unique Hb phenotype enhances
CO2 carrying capacity during burst activity (tunnelling)
in gas-exchange impeded burrows.

Methods
Blood/tissue collection and preparation
Hemoglobin
All study animals were captured and cared for in accor-
dance with the principles and guidelines of the Canadian
Council on Animal Care under the authorization of a
University-approved animal research protocol (Univer-
sity of Manitoba Animal Use Protocol# F01-026). Blood
samples (~2 ml) were collected from anaesthetized east-
ern (Nashville, Tennessee) and coast moles (Abbotsford,
BC, Canada) and immediately stored at -80°C. Samples
were subsequently thawed and diluted with 1 volume dis-
tilled water, 0.1 vol. 1 M HEPES buffer (pH~7.5), and cen-
trifuged for 15 min at 14,000 RPM. Individual isoHb
components were isolated by preparative isoelectric
focusing in a 110-ml LKB column containing a 1% solu-
tion of CO-saturated ampholines (pH range 6.7-7.7; LKB,
Sweden) and eluted 1-ml fractions were analyzed for
absorption (540 nm) and pH. Pooled fractions of individ-
ual Hb components were dialysed for 24-36 h against
three changes of CO-equilibrated dialysis buffer (0.01 M
HEPES), concentrated by ultrafiltration and frozen at -
80°C in small aliquots that were thawed individually on
ice prior to analyses. Air equilibrated samples showed
slight if any spectrophotometric evidence for oxidation (<
5%).
Whole blood
Blood samples (~2 ml) were obtained in heparinized
syringes via cardiac puncture from a single anaesthetized
star-nosed mole (Caddy Lake, MB, Canada) and from
coast and eastern moles collected from the same areas,
but in different years, as those described above. A small
sub-sample (60 μl) of blood was immediately transferred
to a pre-heated tube (36-37 °C) and pH determined using
a IQ Scientific benchtop ISFET pH meter with PH16-SS
stainless steel micro pH probe.

Forelimb, hindlimb and heart muscles from six addi-
tional eastern moles euthanized with an overdose of Iso-
flurane inhalant anaesthetic were immediately dissected,
freeze-clamped in liquid N2, and stored at -70°C. Tissue
Mb and buffering capacity were later determined follow-

ing the methods of Reynafarje [47] and Castellini and
Somero [48] as outlined in McIntyre et al. [45]. Plasma
and intraerythrocytic pH of blood sub-samples were
measured using a freeze-thaw technique similar to that
outlined by Zeidler and Kim [49]. Blood hematocrit and
Hb concentrations were determined in duplicate follow-
ing the procedures outlined by McIntyre et al. [45]. Stan-
dards were prepared from lyophilized human Hb (Sigma
Hemoglobin Standard number 525-18). Samples were
diluted to obtain values within the standard curve, and
the Hb concentrations calculated by multiplying the mea-
sured value by the percent dilution. Red cell DPG concen-
trations were determined spectrophotometrically from
four eastern moles with Roche kit Catalog Number 148
334, while those of three additional coast moles were
assayed with Sigma Chemical kit No. 665-PA. Eastern
mole red cell counts were determined from 1:200 dilu-
tions of blood in Hayem's solution using a Neubauer
hemocytometer, and mean corpuscle volume, mean cor-
puscular Hb and mean corpuscular Hb concentration cal-
culated [50]. Similar hematology parameters from a
single coast mole were measured in a Sysmex™ Model
NE-8000™ hematology analyzer. Mean values between
species were compared using a Welch's t-test, which
accounts for possible unequal variances between the two
sample means.

Oxygen binding measurements
Hemoglobin
Immediately before O2 equilibration determinations,
appropriate volumes of water, 0.1 M HEPES buffer, and
when applicable, standard KCl and 2,3-DPG solutions
were added to aliquots of purified Hb components (final
Hb4 concentration 0.05 mM). Oxygen equilibration data
were measured in duplicate at 25 and 37°C via absor-
bance changes at 436 nm using a modified diffusion
chamber technique [51]. Ultrathin layers of Hb solutions
(3 μl) were equilibrated alternatively with pure (>
99.998%) N2 and O2 then subjected to stepwise mixes of
N2 and air prepared with two Wösthoff pumps connected
in series to ensure full equilibration at each step [51]. P50
and n50 values interpolated from Hill plots were calcu-
lated from at least 4 equilibration steps between 30 and
70% saturation for each trial. Following binding measure-
ments, Cl- concentration for each sample was assessed
using a CMT19 chloride titrator (Radiometer, Copenha-
gen, Denmark), and pH measured in oxygenated sub-
samples equilibrated to experimental temperatures (25
and 37°C) using a Radiometer BMS2 Mk2 Blood Micro
system and PHM 64 Research pH meter. Stock solutions
of DPG added to Hb samples were assayed using Sigma
enzymatic test chemicals. The overall enthalpy of oxygen-
ation (ΔH, kJ mol-1 O2), corrected for the solubilization
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heat of O2 (-12.5 kJ mol-1), was calculated from the inte-
grated van't Hoff equation [9].
Whole blood
Blood-oxygen binding properties were measured by
equilibrating small (3-4 μl) aliquots of whole blood to O2
tensions ranging from 0 to 190 mm Hg using a modified
[52] Hem-O-Scan (American Instrument Co, Silver
Springs, MD). Initially, measurements were conducted at
the typical body temperature (Tb) of each species (East-
ern mole = 36.0°C; coast mole = 36.0°C, KLC, unpub-
lished data; star-nosed mole = 37.7°C, [53]) at a PCO2 of
38 mmHg. This procedure was repeated in CO2-free gas,
and the pH of separate deoxygenated blood sub-samples
equilibrated (at Tb) to these PCO2's were used to calcu-
late CO2 Bohr coefficients. To assess the effect of temper-
ature on oxygen equilibration curves, trials were also
conducted at 32 and 40°C for each species. Because star-
nosed moles are semi-aquatic and may exhibit strong
regional heterothermy while foraging in cold water, addi-
tional trials on blood samples equilibrated to 3, 15 and
36°C were conducted. Oxygen equilibration curves were
constructed following Severinghaus [54].

DNA/RNA extraction and cDNA library construction
Genomic DNA was prepared from 100-200 mg of spleen
or liver tissue using standard phenol/chloroform extrac-
tion procedures. Primers were designed using areas of
high sequence identity in the coding, and 5' and 3' flank-
ing regions of orthologous eutherian α- and β-like globin
genes and from the published amino acid sequences for
these polypeptide chains of the European mole [5]. To
determine appropriate annealing temperatures for each
primer pair (see Additional file 1: Table S1), PCR reac-
tions were initially run on 100 ng of template DNA and
Taq polymerase using the gradient function of a MJ
Research Dyad™ thermal cycler. Following a 5 min dena-
turation period at 94°C, a standard three-step PCR proto-
col was used (94°C for 30 sec; 48-56°C for 15 sec; 72°C for
60 sec; 30 cycles). The 5' and 3' flanking regions of each
gene were subsequently obtained using the APAgene™
Genome Walking Kit (Bio S&T Inc., Montreal, PQ). In all
cases, amplified PCR products of the desired size range
were excised from the 1% agarose gel and purified using
the Qiagen MinElute Gel Extraction Kit. These products
were then cloned into Qiagen pDrive cloning vectors and
positive clone plasmids purified with the Qiagen
QIAprep Spin Miniprep Kit.

Total RNA was extracted from ~80 mg of eastern (n =
3) and coast mole (n = 3) spleen samples that had been
stored in RNAlater (Ambion) using TRIzol® reagent, as
per the manufactures directions (Invitrogen). The quan-
tity and quality of the recovered RNA was determined
using an Ultrospec™ 3100 pro UV/Visible Spectropho-

tometer (Amersham Biosciences). 10 μg of total RNA was
used to construct a cDNA library using an ExactStart™
Full-Length cDNA Library Cloning Kit (Epicentre Bio-
technologies). RNA decapping, 5' oligo ligation and first
strand cDNA synthesis reactions were performed accord-
ing to Epicentre Biotechnologies' protocol. Second strand
cDNA was synthesized and amplified by a PCR reaction
containing a 2 μl aliquot of first strand cDNA and 48 μl of
reaction mix (0.25 μl of each dNTP (2.5 mM), 5 μl of 10 ×
Reaction Buffer (Invitrogen), 1.5 μl of 50 mM MgCl2, 1 μl
of each primer (provided with the ExactStart™ Kit), 0.4 μl
(2.5 Units) of Taq DNA polymerase (Invitrogen) and 38.1
μl of ddH2O), using an Eppendorf Mastercycler® Gradient
thermocycler. Following an initial denaturation period of
95°C for 30 seconds, total cDNA was amplified using a 3-
step PCR protocol (95°C for 30 seconds; 60°C for 30 sec-
onds; 72°C for 4 minutes; 20 cycles). The double stranded
cDNA was purified by phenol:chloroform extraction then
digested with Asc I and Not I restriction enzymes and
ligated into pCDC1-K cloning ready vectors according
Epicentre Biotechnologies' protocol. 1 μl of the ligation
reaction was used to transform 50 μl of TransforMax™
EC100™ Chemically Competent E. coli (Epicentre Bio-
technologies). The transformation reaction was incu-
bated at 37°C with shaking (225 rpm) for 1 h to allow the
expression of the kanamycin resistance gene. In order to
establish a cDNA library culture, the entire transforma-
tion reaction was used to inoculate Luria Bertani broth
(10 ml final volume) containing kanamycin (50 μg ml-1

final concentration) and incubated at 37°C with shaking
(225 rpm) for 18 h. A 3 ml aliquot of this culture was
purified using a QIAprep® Spin Miniprep Kit to obtain a
pure plasmid cDNA library.

Clone selection
Positive clones were selectively retrieved from the plas-
mid library using a modified version of the magnetic bead
cDNA capture method described by Shepard and Rae
[55]. In brief, the plasmid cDNA library was hybridized
with biotinylated oligonucleotide probes (which target
highly conserved regions of the α- and β-like globin
genes) and blocking oligonucleotides (which correspond
to the 5' and 3' ends of each probe to prevent renaturation
of the plasmid DNA; Additional file 2: Table S2). Plasmids
that hybridized with a biotinylated probe were bound to
streptavidin coated magnetic beads (Dynabeads® M-280
Streptavidin, Invitrogen) and then subjected to a series of
high stringency washes to remove any plasmids that non-
specifically hybridized with a probe. The remaining plas-
mids were released from the magnetic beads and trans-
formed into TransforMax™ EC100™ Chemically
Competent E. coli (Epicentre Biotechnologies). Trans-
formed cells were spread on plates containing 50 ml of LB
agar, 50 μl of Kanamycin (50 μg μl-1), 80 μl of X-gal (40 mg
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ml-1) and 20 μl of IPTG (0.1 M) and incubated at 37°C for
18 h.

Selected clones were screened for the presence of their
respective insert by scraping an isolated colony into a 0.2
ml PCR tube and adding 15 μl of a PCR reaction mix
(0.35 μl of each dNTP (2.5 mM), 1.5 μl of 10 × Reaction
Buffer (Invitrogen), 0.6 μl of 50 mM MgCl2, 0.6 μl of each
primer (designed from highly conserved regions among
mammalian α- and β-globin genes using Primer Premier
5.0 software), 0.12 μl (0.6 Units) of Taq DNA polymerase
(Invitrogen) and 10.18 μl of ddH2O). Positive clones were
used to inoculate 8 ml of LB culture medium containing
kanamycin (50 μg ml-1 final concentration) and incubated
for 18 h at 37°C while shaking at 225 rpm. A 3 ml sample
of each culture was purified using a QIAprep® Spin Mini-
prep Kit (Qiagen). 2 μl of purified plasmid DNA was
digested with Eco RI and Hind III (1 μl of each enzyme, 2
μl of 10 × React®2 buffer and 14 μl of ddH2O) and electro-
phoresed for 1 hr at 100 V on a 1% agarose gel (Ultra-
Pure™, Invitrogen) to confirm the size of the insert.

DNA sequencing
Sequencing reactions were preformed on 200 ng of puri-
fied plasmid DNA using the BigDye® Terminator v3.1
Cycle Sequencing Kit (Applied Biosystems) and the uni-
versal sequencing primer M-13(R). Reaction mixtures
were sequenced using a 4-capillary Applied Biosystems
3130 Genetic Analyzer. Consensus alignments for each
gene were constructed using Sequencher™ (Version 4.6)
software, and the amino acid compliment of each globin
chain was deduced. Sequence data were deposited in
GenBank with the accession numbers (AY842447-
AY842448, HM060229-HM060234 and HM060237-
HM060243).

Determination of Hb isoform composition
After using isoelectric focusing native gels to assess Hb
isoform diversity, the individual globin chain subunits
were dissociated and separated by means of Acetic acid-
Urea-Triton X-100 (AUT) gel electrophoresis [56]. Elec-
trophoretic bands representing dissociated α- and β-type
chain monomers were excised from each AUT gel,
digested with trypsin, and identified by means of tandem
mass spectrometry (MS/MS; [57,58]). The peak lists of
the MS/MS data were generated by Distiller (Matrix Sci-
ence, London, UK) using the charge state recognition and
de-isotoping with default parameters for quadrupole
time-of-flight data. Database searches of the resultant
MS/MS spectra were performed using Mascot (Matrix
Science, v1.9.0, London, UK). Specifically, the peptide
mass fingerprints were used to query a reference database
of α- and β-like globin sequences that included each of
the globin cDNA sequences from the same sample of
moles. The following search parameters were used: no

restriction on protein molecular weight or isoelectric
point, enzymatic specificity set to trypsin, and methion-
ine oxidation allowed as a variable peptide modification.
Mass accuracy settings were 0.15 daltons for peptide
mass and 0.12 daltons for fragment ion masses. We iden-
tified all significant protein hits that matched more than
one peptide with P < 0.05.

Phylogenetic reconstructions
To infer orthologous relationships of β-like globin
sequences from eastern mole and coast mole, we con-
ducted a phylogenetic survey of nucleotide variation in
the β-like globin genes of six other eutherian mammals.
In addition to eastern mole and coast mole, this set of
species included three other eulipotyphlan species
(Atelerix albiventris [GenBank: AC104389]; Erinaceus
europaeus [scaffolds 283493, 67442, and 340990]; and
Sorex araneus [AC166888]), as well as human (Homo
sapiens [AC104389]), rabbit (Oryctolgus cuniculus
[AC166202]), and armadillo (Dasypus novemcinctus
[AC151518]). β-like globin sequences from human, rab-
bit, and armadillo were included in the phylogenetic anal-
ysis because they each possess a closely linked pair of
well-characterized HBB and HBD genes [13]. Sequences
were aligned using MUSCLE [59], as implemented in the
European Bioinformatics Institute web server http://
www.ebi.ac.uk. Since the coding regions of duplicated
globin genes are often affected by gene conversion, reli-
able inferences about orthologous relationships can be
obtained by examining intron 2 sequence [13,14]. We
therefore performed phylogenetic reconstructions based
on both coding sequence (477 bp) and intron 2 sequence
(938 bp). We inferred phylogenetic relationships among
the β-like globin sequences in a maximum likelihood
framework using Treefinder, version April 2008 [60], and
we assessed support for each node with 1000 bootstrap
pseudoreplicates. We selected the best-fitting model of
nucleotide substitution for each of the two data partitions
using the Bayesian Information Criterion in Treefinder.
Phylogenetic reconstructions of the coding and intronic
sequences were conducted using the HKY + γ and TN + γ
models, respectively.

Molecular modeling
Amino-acid substitutions of both mole species (relative
to human Hb A) were inserted into the 3D T-state deoxy
structures of human Hb with DPG absent (eastern mole
model from PDB 2DN2) and present (coast mole model
from PDB 1B86). Structural homology models of eastern
mole and coast mole Hbs were then prepared using the
MODELLER function of the Insight II program package
version 97.2 (Biosym Technologies, San Diego, CA). The
strain energy in the vicinity of the central cavity between
the δ-chains of both Hb models were generated sepa-

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY842447
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY842448
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM060229
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM060234
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM060237
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM060243
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC104389
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC166888
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC104389
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC166202
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC151518
http://www.ebi.ac.uk
http://www.ebi.ac.uk
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2DN2
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1B86
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rately in the GROMOS force field using the 53A6 param-
eter set optimized for molecular dynamics simulations
[61]. For each substitution the strain energy was subse-
quently minimized using the GROMACS package (ver-
sion 3.3). This involved a brief steepest descents run that
employed a maximum step size protocol of 1Å, and a
maximum tolerance of 1000 kJ mol-1 nm-1. This was fol-
lowed by a more extensive conjugate gradients minimiza-
tion with a tolerance of 100 kJ mol-1 nm-1. A Morse
oscillator model was used to represent covalent bonding
in the conjugate gradients minimization step, while a har-
monic oscillator approximation was utilized for the
steepest descents protocol. For the eastern mole model-
ling, the N-terminus was initially set to a charge of +0.5.
Under these conditions, two equally likely intra-chain
electrostatic interactions were present: Gluδ136-Lysδ82
and Gluδ136-Valδ1 (ionized N-terminus). However,
given that the former bond is much more stable than the
latter, the equilibrium shifts solely to the Gluδ136-Lysδ82
formation over multiple iterations. This same association
is exclusively found when the N-terminus was given a
neutral charge. Three-dimensional molecular representa-
tions were visualized with DINO version 0.9.1 [62].
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