56 research outputs found

    Conflicting and ambiguous names of overlapping ORFs in the SARS-CoV-2 genome: A homology-based resolution.

    Get PDF
    At least six small alternative-frame open reading frames (ORFs) overlapping well-characterized SARS-CoV-2 genes have been hypothesized to encode accessory proteins. Researchers have used different names for the same ORF or the same name for different ORFs, resulting in erroneous homological and functional inferences. We propose standard names for these ORFs and their shorter isoforms, developed in consultation with the Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. We recommend calling the 39 codon Spike-overlapping ORF ORF2b; the 41, 57, and 22 codon ORF3a-overlapping ORFs ORF3c, ORF3d, and ORF3b; the 33 codon ORF3d isoform ORF3d-2; and the 97 and 73 codon Nucleocapsid-overlapping ORFs ORF9b and ORF9c. Finally, we document conflicting usage of the name ORF3b in 32 studies, and consequent erroneous inferences, stressing the importance of reserving identical names for homologs. We recommend that authors referring to these ORFs provide lengths and coordinates to minimize ambiguity caused by prior usage of alternative names

    Human cytomegalovirus long noncoding RNA4.9 regulates viral DNA replication

    Get PDF
    Viruses are known for their extremely compact genomes composed almost entirely of protein-coding genes. Nonetheless, four long noncoding RNAs (lncRNAs) are encoded by human cytomegalovirus (HCMV). Although these RNAs accumulate to high levels during lytic infection, their functions remain largely unknown. Here, we show that HCMV-encoded lncRNA4.9 localizes to the viral nuclear replication compartment, and that its depletion restricts viral DNA replication and viral growth. RNA4.9 is transcribed from the HCMV origin of replication (oriLyt) and forms an RNA-DNA hybrid (R-loop) through its G+C-rich 5’ end, which may be important for the initiation of viral DNA replication. Furthermore, targeting the RNA4.9 promoter with CRISPR-Cas9 or genetic relocalization of oriLyt leads to reduced levels of the viral single-stranded DNA-binding protein (ssDBP), suggesting that the levels of ssDBP are coupled to the oriLyt activity. We further identified a similar, oriLyt-embedded, G+C-rich lncRNA in murine cytomegalovirus (MCMV). These results indicate that HCMV RNA4.9 plays an important role in regulating viral DNA replication, that the levels of ssDBP are coupled to the oriLyt activity, and that these regulatory features may be conserved among betaherpesviruses

    Defining the Transcriptional Landscape during Cytomegalovirus Latency with Single-Cell RNA Sequencing

    Get PDF
    Primary infection with human cytomegalovirus (HCMV) results in a lifelong infection due to its ability to establish latent infection, with one characterized viral reservoir being hematopoietic cells. Although reactivation from latency causes serious disease in immunocompromised individuals, our molecular understanding of latency is limited. Here, we delineate viral gene expression during natural HCMV persistent infection by analyzing the massive RNA-seq atlas generated by the Genotype-Tissue Expression (GTEx) project. This systematic analysis reveals that HCMV persistence in-vivo is prevalent in diverse tissues. Unexpectedly, we find only viral transcripts that resemble gene expression during various stages of lytic infection with no evidence of any highly restricted latency-associated viral gene expression program. To further define the transcriptional landscape during HCMV latent infection, we also used single cell RNA-seq and a tractable experimental latency model. In contrast to some current views on latency, we also find no evidence for any highly restricted latency-associated viral gene expression program. Instead, we reveal that latency-associated gene expression largely mirrors a late lytic viral program albeit at much lower levels of expression. Overall, our work has the potential to revolutionize our understanding of HCMV persistence and suggests that latency is governed mainly by quantitative changes, with a limited number of qualitative changes, in viral gene expression.This research was supported by the EU-FP7-PEOPLE career integration grant, the Israeli Science Foundation (1073/14; N.S.-G.), Infect-ERA (TANKACY; N.S.-G.), the European Research Council starting grant (StG-2014-638142; N.S.-G.), the British Medical Research Programme (grant G0701279; J.S.), a Wellcome Research Studentship Grant (B.K.), and the Cambridge NIHR BRC Cell Phenotyping Hub. N.S.-G. is incumbent of the Skirball career development chair in new scientist

    Cap-binding protein 4EHP effects translation silencing by microRNAs

    Get PDF
    Significance miRNAs are important components of gene regulatory networks and affect all aspects of cell biology by controlling the stability and translation efficiency of their target mRNAs. Here, we identified the mRNA cap-binding eIF4E-related protein 4EHP as an effector of miRNA-mediated translation repression. Through screening for protein interactions in cells via the BioID method, we identified 4EHP as a component of the CCR4–NOT/DDX6/4E-T axis. Direct interaction between 4E-T and 4EHP increases the latter’s cap-binding affinity, suggesting that this interaction potentiates its competition with the eIF4F complex for binding to the mRNA 5′ cap. Our findings suggest that 4EHP facilitates the formation of a closed-loop structure between the 3′ UTR of the mRNA and its 5′ cap, which causes repression of mRNA translation.</jats:p

    ITN—VIROINF: understanding (harmful) virus-host interactions by linking virology and bioinformatics

    Get PDF
    Many recent studies highlight the fundamental importance of viruses. Besides their important role as human and animal pathogens, their beneficial, commensal or harmful functions are poorly understood. By developing and applying tailored bioinformatical tools in important virological models, the Marie Skłodowska-Curie Initiative International Training Network VIROINF will provide a better understanding of viruses and the interaction with their hosts. This will open the door to validate methods of improving viral growth, morphogenesis and development, as well as to control strategies against unwanted microorganisms. The key feature of VIROINF is its interdisciplinary nature, which brings together virologists and bioinformaticians to achieve common goals

    Decoding Viral Infection by Ribosome Profiling

    No full text

    Regulation of mRNA translation during mitosis.

    No full text
    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ~200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function
    corecore