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Abstract 

MicroRNAs (miRNAs) play critical roles in a broad variety of biological processes by 

inhibiting translation initiation and by destabilizing target mRNAs. The CCR4-NOT 

complex effects miRNA-mediated silencing at least in part through interactions with 4E-

T (eIF4E-Transporter) protein, but the precise mechanism is unknown. Here we show 

that the cap-binding eIF4E-Homologous Protein 4EHP is an integral component of the 

miRNA-mediated silencing machinery. We demonstrate that the cap-binding activity of 

4EHP contributes to the translational silencing by miRNAs through the CCR4-NOT 

complex. Our results suggest that 4EHP competes over eIF4E for binding to 4E-T, and 

this interaction increases the affinity of 4EHP for the cap. We propose a model wherein 

the 4E-T/4EHP interaction triggers the assembly of a closed loop mRNA conformation 

that blocks translational initiation of miRNA targets.  

  

 

Keywords: microRNA, miRNA, mRNA translation, eIF4E2, 4EHP, 4E-T, CCR4-NOT, 

eIF4E, eIF4F  
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Statement of significance 

miRNAs are important components of gene regulatory networks and affect virtually all 

aspects of cell biology by controlling the stability and translation efficiency of their target 

mRNAs. Here we identified the mRNA cap-binding eIF4E-related protein, 4EHP as an 

effector of miRNA-mediated translation repression. Through screening for protein 

interactions in cells via the BioID method, we identified 4EHP as a component of the 

CCR4-NOT/DDX6/4E-T axis. Direct interaction between 4E-T and 4EHP increases the 

latter’s cap-binding affinity, suggesting that this interaction potentiates its competition 

with the eIF4F complex for binding to the mRNA 5´cap. Our findings suggest that 4EHP 

facilitates the formation of a closed-loop structure between the 3´ UTR of the mRNA and 

its 5´cap, which causes repression of mRNA translation.  
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\body 

 INTRODUCTION 

MicroRNAs (miRNAs) are short ∼22-nucleotide noncoding RNAs that affect gene 

expression in most eukaryotes. miRNAs mediate post-transcriptional silencing by guiding 

the miRNA-induced silencing complex (miRISC), an assembly of Argonautes and 

GW182/TNRC6 proteins, to target mRNAs. Target recognition initiates a succession of 

events: mRNA translational repression, deadenylation and mRNA decay (1). miRNAs 

impair the function of eIF4F on mRNAs, a three-subunit complex composed of eIF4E, 

the m7GTP (cap)-interacting factor, eIF4G, a scaffolding protein, and eIF4A, a DEAD-

box RNA helicase (2-5). The silencing activity of miRISC is mediated by the CCR4–

NOT deadenylase complex through the scaffolding subunit, CNOT1 (6-8). CNOT1 

recruits the DDX6 and 4E-T (eIF4E-Transporter) proteins and their interaction is 

important for miRNA-mediated silencing (9-16). 4E-T is a conserved eIF4E-binding 

protein, which directly binds to the dorsal surface of eIF4E through its canonical eIF4E-

binding YX4LL (Y30TKEELL) motif, and impairs the eIF4E/eIF4G interaction and 

translation initiation (17). 4E-T also facilitates the decay of CCR4-NOT targeted mRNAs 

by linking the 3'-terminal mRNA decay machinery to the cap via its interaction with 

eIF4E (13).  

In mammals, eIF4E is the best-studied member of a family of proteins composed of 

eIF4E (eIF4E1), 4EHP (4E-Homologous Protein; eIF4E2) and eIF4E3. 4EHP and eIF4E3 

share respectively 28% and 25% sequence identity with eIF4E (18, 19). 4EHP is a 

ubiquitously expressed protein, and it is 5-10 times less abundant than eIF4E in a number 
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of mammalian cell lines (18-20). Like eIF4E, 4EHP binds to 4E-T, but in contrast, it does 

not associate with eIF4G (18, 21). 4EHP has a 30-100-fold weaker affinity for the cap 

than eIF4E due to a two amino acid substitution in its cap-binding pocket (22). However, 

post-translational modifications can improve 4EHP affinity for the cap (23, 24). 

 4EHP has primarily been studied as a translation repressor. In the Drosophila embryo, 

4EHP associates with the RNA binding protein Bicoid to repress caudal mRNA 

translation (25). Similarly, 4EHP also represses the hunchback mRNA via its interaction 

with the nanos repressive element (NRE) complex, which consists of nanos, pumilio, and 

“brain tumor” proteins (26). A similar mechanism functions in mouse, where 4EHP binds 

the Prep1 RNA-binding protein and inhibits Hoxb4 mRNA translation (27). Moreover, 

4EHP forms a translational repressor complex with GIGYF2 (Grb10-interacting GYF 

protein 2), which acts as a cofactor in translational repression and mRNA decay of 

tristetraprolin-targeted mRNAs (28, 29).  

 In this study, we demonstrate that 4EHP interacts with the mRNA silencing machinery, 

and engenders miRNA-mediated translational repression. Our data support a model 

wherein 4EHP interactions with miRISC/CCR4-NOT lead to the translational repression 

of miRNA targets. 
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RESULTS 

4EHP is a component of the miRISC effector machinery.  

The specificity of eIF4E and 4EHP for their mRNA targets and their affinities for the cap 

are defined by binding partners (2, 28, 30). Thus, we utilized the BioID assay (31) to 

identify the eIF4E and 4EHP interacting proteins. We created stable cell lines expressing 

4EHP or eIF4E fused in-frame with an abortive biotin ligase BirA* (R118G) (Fig. S1A 

and B). 4EHP and eIF4E proteins were thus used as baits to biotinylate and capture 

interactors and proteins in close proximity. Biotinylated proteins were isolated using 

streptavidin-affinity purification under denaturing conditions and analyzed by mass 

spectrometry (MS). Each bait protein was fused at its N- or C-terminus to BirA* and two 

independent replicates for each construct were analyzed (4 in total for each bait protein), 

alongside negative controls. The MS data were processed with the SAINT (Significance 

Analysis of INTeractome) computational tool (32) using several controls for statistical 

analysis to assign confidence scores to interaction pairs (Dataset S1; see Materials and 

Methods). Data were highly consistent across replicates (mean correlation coefficient 

R2 = 0.89 and 0.94, for 4EHP and eIF4E, respectively; Fig. S1C and D). BioID identified 

30 high-confidence targets for 4EHP and 8 for eIF4E (FDR ≤ 1%; Fig. 1A and Dataset 

S1). The list of proteins identified for 4EHP is consistent with previous reports showing 

that 4EHP interacts with GIGYF1, GIGYF2, ZNF598, and 4E-T proteins (28). Known 

interactions with eIF4E, such as 4E-BP1 (EIF4EBP1), EIF4G1 and eIFG3, were also 

detected (33).   
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Gene ontology analysis showed that “translation” was the biological process with the 

most significant representation among 4EHP interactions (Fig. 1B and Dataset S2). In 

contrast with eIF4E, BioID with 4EHP identified several known miRNA co-factors 

including DDX6, CNOT1, PATL-1 and TNRC6A/B, the scaffolding proteins of miRISC 

(1). To confirm that 4EHP physically interacts with these proteins, we carried out co-

immunoprecipitation (IP) experiments. Due to the poor quality of the commercially 

available anti-4EHP antibodies for IP assay, lysates prepared from human embryonic 

kidney (HEK) 293T cells transfected with a vector expressing 3xFlag-4EHP, or an empty 

vector, were immunoprecipitated with anti-Flag antibody followed by western blotting. 

FLAG-tagged 4EHP co-precipitated 4E-T and the CNOT1 subunit of the CCR4-NOT 

complex (Fig. 1C). Likewise, endogenous 4EHP co-precipitated with endogenous DDX6, 

as well as HA-tagged PATL-1, a physical partner of both CCR4-NOT, DDX6 and 4E-T 

(12, 34, 35) (Fig. 1D and E). Taken together, these data demonstrate that 4EHP 

physically associates with several key proteins involved in miRISC/CCR4-NOT-

mediated gene silencing. 

 4EHP effects miRNA-dependent translational repression.  

The association of 4EHP with components of miRISC and its effector machinery (CCR4-

NOT, 4E-T, DDX6) raised the possibility that 4EHP plays a role in miRNA-mediated 

silencing. To investigate this, we used a luciferase construct (Fig. 2A) fused to the wild-

type (WT) 3′ UTR of the Hmga2 mRNA (an endogenous target of the let-7 miRNA), or a 

modified version with point mutations disrupting all seven target sites (36). Reporter 

constructs were transfected into mouse embryonic fibroblasts (MEFs) from wild-type 
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(WT) or 4EHP-knockout (KO) mice (Fig. S2A) (28). The reporter containing the wild-

type 3′ UTR of Hmga2 was repressed 4.4 fold in WT MEFs as compared to the mutated, 

control reporter (Fig. 2A and S2B). This repression was significantly less (1.6-fold) in 

4EHP-KO cells, demonstrating that 4EHP is required for the efficient silencing of the 

Hmga2 3´ UTR reporter by the let-7 miRNA. We also examined the impact of 4EHP 

depletion on silencing of two additional miRNA reporters, in the U251 human 

glioblastoma cell line and in the human cervical adenocarcinoma HeLa cell line. A 

luciferase construct containing a portion of the E2f 3′ UTR, which is repressed by the 

miR-17/20a paralogs (37), was significantly de-repressed upon knock-down of 4EHP in 

U251 cells ((Fig. 2B and S2C). Similarly, depletion of 4EHP (si4EHP) in HeLa cells 

significantly de-repressed a luciferase reporter harboring three miR-19a-binding sites, in 

comparison with cells treated with a control siRNA (siCTR) (Fig. S2D and E). De-

repression was not due to the differential expression of the miRNAs in 4EHP-depleted 

cells (Fig. S2F). Altogether, our data indicate that 4EHP contributes to miRNA-mediated 

silencing by several miRNAs, and in various mammalian cell lines. 

CNOT1, the scaffolding subunit of the CCR4-NOT complex, is an established player in 

miRNA-mediated silencing (6-8). We therefore sought to examine the interaction 

between 4EHP and CNOT1. To this end, we transfected HEK293T cells with plasmids 

encoding 3xFlag-4EHP and V5-tagged full-length or truncated variants of CNOT1 (Fig. 

2C), and examined their interaction by co-IP. 4EHP co-precipitated with either the full-

length CNOT1, or the middle domain (M) of CNOT1 (Fig. 2D). Importantly, the middle 

domain also interacts with 4E-T via DDX6 (9, 10, 14-16). To investigate if 4EHP plays a 

role in translation repression by the CCR4-NOT complex, we used the λN-BoxB 



 9 

tethering approach (38). We employed a RL reporter containing five BoxB hairpins in its 

3′ UTR. The 3´-end of the reporter contains a self-cleaving hammerhead ribozyme (HhR) 

to generate an internalized poly(A) stretch of 114 nt, followed by 40 nt to prevent 

deadenylation and subsequent degradation (39). The reporter was co-transfected into 

HEK293T cells along with a plasmid encoding a fusion of CNOT1 to a λN peptide, 

which binds to BoxB elements. Silencing through CNOT1 was examined by comparing 

the luciferase activity in cells wherein 4EHP was stably depleted via shRNA (sh4EHP) 

with non-depleted control cells (shCTR). CNOT1 tethering to the BoxB reporter in 

shCTR cells resulted in a 3.7-fold repression of RL activity, while depletion of 4EHP 

resulted in significant de-repression of the reporter (1.8-fold; Fig. 2E and S2G). 

Similarly, siRNA knockdown of 4E-T partially relieved the repression exerted by 

tethered CNOT1 (1.8-fold vs 2.9-fold repression in siCTR) (Fig. S2H and I). We also 

examined the role of 4EHP on the repressive activity of the C-terminal silencing domain 

of human GW182/TNRC6C (GW182(SD); AA 1382–1690), which functions through 

CNOT1 recruitment (6-8). Consistent with the effects on the miRNA reporters and with 

the CNOT1 tethering experiment, 4EHP-depletion impinged on the repression exerted by 

tethered GW182(SD) (1.8-fold de-repression) (Fig. 2E and S2G).  

We next examined the importance of the cap-binding activity of 4EHP for miRNA-

mediated silencing. We performed a complementation assay using tethered λN-CNOT1 

in the presence of WT 4EHP or the 4EHPW124A mutant, which is incapable of binding to 

the cap (19). Transient transfection of shRNA-resistant 3xFlag-4EHP in 4EHP-

knockdown cells restored λN-CNOT1-mediated translation repression (Fig. 2F and S2J), 
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while transfection with 4EHPW124A did not. These results demonstrate that cap binding by 

4EHP is required for translation repression effected through CCR4-NOT. 

4EHP and eIF4E compete for binding to 4E-T. 

4E-T is enriched among 4EHP BioID targets (Fig. 1A), but 4E-T also interacts with 

eIF4E, and both eIF4E and 4EHP bind the same eIF4E-binding motif of 4E-T 

(Y30TKEELL) (21). We compared the effects of mutations in this motif on the 

interactions of 4E-T with 4EHP and eIF4E. We co-transfected HEK293T cells with 

constructs encoding 3xFlag-4EHP and either WT HA-tagged 4E-T, or 4E-T bearing point 

mutations in the YTKEELL motif (Y30A and 4A; YTKEELLAAKEEAA) and tested 

their interactions by IP. 4E-T co-immunoprecipitated with 4EHP and eIF4E, but both 

interactions were lost with either mutants of the YTKEELL motif (Fig. 3A). It is 

noteworthy that wild-type HA-4E-T immunoprecipitated a greater portion of 3xFlag-

4EHP, relative to the amount of input, compared with endogenous eIF4E. We thus 

hypothesized that 4E-T may bind better to 4EHP than to eIF4E (Fig. 3A). To further 

study this difference, we performed an IP assay in transfected HEK293T cells, which co-

expressed constant amounts of HA-4E-T, and incremental amounts of Flag-4EHP (Fig. 

3B).  While the interaction between HA-4E-T and endogenous eIF4E could be detected 

in the absence of exogenous 4EHP, overexpression of 4EHP prevented 4E-T binding to 

eIF4E (Fig. 3B). To further examine these interactions, we prepared recombinant 4EHP, 

eIF4E and 4E-T proteins and performed in vitro binding assays. We compared the 4E-

T/4EHP and 4E-T/eIF4E interactions in vitro by using constant amounts of HA-4E-T and 

increasing concentrations of His-4EHP or His-eIF4E (Fig. S3A and B). In such 
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conditions, 4EHP was 20-30 times more potent than eIF4E for binding to 4E-T (Fig. 3C; 

Fig. S3C). To corroborate the preference of 4E-T for 4EHP over eIF4E, we performed an 

in vitro displacement assay using pre-associated HA-4E-T/eIF4E immobilized on anti-

HA agarose beads. An excess amount of eIF4E was incubated with the 4E-T-bound beads 

to saturate the binding sites on 4E-T. Preassembled eIF4E/4E-T complexes were next 

incubated with increasing amounts of recombinant 4EHP. In such conditions, addition of 

1.8 µM of 4EHP displaced more than 60% of eIF4E bound to 4E-T (Fig. 3D). Altogether 

these results suggest that 4EHP has a competitive advantage over eIF4E for binding to 

4E-T. 

4E-T interaction increases the affinity of 4EHP to m7GTP cap. 

Protein interaction and post-translational modifications can significantly modulate the 

affinity of eIF4E and 4EHP for the cap (23, 24, 40). In addition to the canonical 

YTKEELL motif, both 4EHP and eIF4E interact with a secondary non-canonical 

sequence of 4E-T. However, the contribution of the non-canonical motif appears more 

important for interaction with 4EHP (21). We thus hypothesized that the extended 

interaction surface of 4E-T and its greater affinity for 4EHP (Fig. 3) may influence the 

ability of 4EHP to bind the m7GTP cap. To test this, we performed an Isothermal 

Titration Calorimetry (ITC) assay to examine how interaction with 4E-T polypeptides 

impacted 4EHP affinity for the cap. We used three different 4E-T peptides: one encoding 

the canonical YTKEELL motif alone (4E-T28-37; Fig. S4A), the same sequence in 

combination with the non-canonical motif (4E-T28-71), and another, which covers the 

entire N-terminal extremity (4E-T1-265, Fig. S4A). The 4E-T peptides were pre-incubated 
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with recombinant 4EHP protein and titrated with m7GTP. Using this assay, the affinity of 

4EHP for m7GTP was 8.0 ± 0.56x10-6
 

M in the absence of 4E-T peptides (Table 1 and 

Fig. S4B). Adding the 4E-T28-37 peptide did not significant change this affinity. However, 

the affinity of 4EHP for the m7GTP cap was 4-fold greater in the presence of the N-

terminus of 4E-T (KD of 5.9 ± 0.7x10-6
 

M and 1.8 ± 0.4x10-6 M for 4E-T28-71 and 4E-T1-

265, respectively; Table 1 and Fig. S4B-E). In comparison, the affinity of eIF4E for the 

m7GTP cap (KD 8.8 ± 11x10-8 M) remained virtually unchanged by the 4E-T peptides 

(Table 1 and Fig. S4F-I). Altogether, these results suggest that 4E-T interactions with 

4EHP enhance its binding to the m7GTP cap structure. 

 

DISCUSSION 

Here, we describe a role for 4EHP in miRNA-mediated translation repression. Our results 

suggest that miRISC recruits 4EHP to target mRNAs through the CCR4-NOT complex. 

We propose that these interactions engender a closed-loop mRNP structure (Fig. 4), 

which resembles the cap-to-tail closed-loop mRNA conformation in translation initiation 

(41). A similar mechanism of translational inhibition had been described in Drosophila 

embryos wherein an interaction between d4EHP and Bicoid bridges the 5′ and 3′ ends of 

caudal mRNA (25). Thus, 4EHP-mediated mRNA looping appears as a general 

repressive mechanism implicated in various post-transcriptional regulatory pathways. 

This mechanism can also be employed by other RNA-binding proteins such as pumilio 

family members, tristetraprolin and nanos, which recruit CCR4-NOT to mRNAs (42).  
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An additional layer of complexity in understanding the exact mechanism of 4EHP action 

stems from the interaction of 4EHP with other protein partners. For instance, the 

GIGYF1/2 and 4E-T proteins bind to the same 4E-T binding motif on the 4EHP protein, 

and thus likely compete with 4E-T for this binding site. The GIGYF1/2-4EHP complex 

had been characterized as a translational repressor, notably as a cofactor of tristetraprolin 

(28, 29). Interestingly, GIGYF1/2 also associate with CCR4-NOT in both yeast and 

human cells (43, 44). Furthermore it was reported that GIGYF2 co-immunoprecipitates 

with AGO2, and tethering of GIGYF2 to a mRNA leads to its silencing (45). Therefore, it 

is conceivable that the miRISC/CCR4-NOT axis may recruit 4EHP via several parallel 

interactions, namely through interactions with both GIGYF1/2 and 4E-T. 

Our model provides a tenable model of miRNA-mediated translation repression, but 

further investigation is necessary to fully resolve the interactions that occur at the cap of 

miRNA targets. An important conundrum is that the affinity of recombinant eIF4E for the 

cap is 30-100-fold greater than that of recombinant 4EHP. While binding to 4E-T 

increases 4EHP’s affinity for the cap by ~4-fold, it remains much weaker than eIF4E 

(Fig. S4 and Table 1). The solution to this discrepancy may lie in additional interactions 

that prevail within the native miRISC effector complex and are missing from in vitro 

assays. Other interactions may further improve the affinity of 4EHP for the cap. Further 

study of the protein-protein interactions identified in our BioID survey may help resolve 

this conundrum. Alternatively, since the affinity of 4E-T for 4EHP is greater than that for 

eIF4E it is also possible that their interaction may enhance the proximal concentration of 

4EHP near the cap to potentiate competition with eIF4E.  
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It was recently reported that 4E-T is recruited to mRNAs targeted by CCR4-NOT, and 

functions as an important co-factor of the mRNA decay machinery (13). This raises the 

intriguing possibility that 4E-T plays a dual role in miRNA-mediated silencing: 4E-T 

interactions with 4EHP potentiate translation repression, while its direct binding to eIF4E 

enables mRNA decay. Therefore, it would be interesting to determine the relative 

importance of eIF4E/4E-T versus 4EHP/4E-T contributions under different 

circumstances to miRNA action. 

While significant progress had been made in understanding how they instigate mRNA 

deadenylation and decay, the mechanisms by which miRNAs repress translation 

remained unclear (1). Several recent studies demonstrated translational repression as an 

early step of miRNA-mediated silencing, which is followed by mRNA deadenylation and 

decay (4, 46, 47). Multiple studies now have shown that miRNAs interfere with 

translation initiation, specifically with cap recognition by eIF4E (3-5), and may induce 

the dissociation of eIF4E and eIF4G from target mRNAs (48). The model outlined here 

wherein 4E-T/4EHP interactions potentiate an interaction with the cap shines a new light 

on those prior findings.  
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Materials and Methods 

BioID; Affinity purification (AP) and Trypsin digestion 

For BioID experiments, stable cells were grown to ~75% confluency. Bait expression 

vectors and biotin were induced simultaneously (1 µg/ml tetracycline, 50 µM biotin). 

After 24 h of treatment, cells were rinsed once on the plate with ~20 ml PBS, then 

scraped into 1 ml of PBS. Cell pellets were collected by centrifugation (500xg for 5 min) 

and stored at -80oC for further processing. Cell pellets were thawed on ice and tared 

weight calculated. A 4:1 (v/w) ratio of ice-cold lysis buffer was added to the cells (50 

mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP40, 0.4% SDS, 1.5 mM MgCl2, 1 mM 

EGTA, benzonase, Sigma protease inhibitors). Cells were dispersed with a P1000 pipette 

tip (~10-15 aspirations) and subjected to a rapid freeze/thaw cycle (dry ice to 37oC water 

bath). Lysates were rotated at 4oC for 30 min then centrifuged at 16,000xg for 20 min at 

4oC. Supernatant was collected (with 20 µL aliquot saved for Western blot) into new 

tubes for affinity purification (AP). Samples were incubated with 20 µL (packed beads) 

of streptavidin-Sepharose (GE) (equilibrated in lysis buffer) with rotation overnight at 

4oC. Beads were collected (500xg for 2 min), the supernatant discarded, and the beads 

transferred to new tubes in 500 µl of lysis buffer. Beads were washed once with SDS 

wash buffer (50 mM Tris-HCl, pH 7.5, 2% SDS), 2x with lysis buffer, and 3x with 50 

mM ammonium bicarbonate, pH 8.0 (ABC) (all wash volumes = 500 µL with 

centrifugations at 500xg for 30 s). Beads were resuspended in 100 µl of ABC containing 

1 µg of sequencing grade trypsin and gently mixed at 37oC for 4 h. 1 µg fresh trypsin was 

added and the samples were rotated overnight. Supernatant was collected (500xg for 2 

min) and the beads washed with 100 µl of molecular biology grade H2O and pooled with 
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peptides. Digestion was terminated by acidification with formic acid (50 µL of 10% stock 

= 2% final concentration). Samples were then centrifuged (16,000xg for 5 min) and 

~90% of the sample was transferred to a new tube and dried with vacuum centrifugation.     

 

Mass spectrometry (MS) 

Dried peptides were resuspended in 10 µL of 2% formic acid, and 1.5 µL was analyzed 

by mass spectrometry (MS). Samples were injected by autosampler onto a spray tip 

formed from fused silica capillary column (0.75 µm ID, 350 µm OD) using a laser puller. 

The column had previously been loaded with 10-12 cm of C18 reversed-phase material 

(ZorbaxSB, 3.5 µm) by pressure bomb loading in MeOH and pre-equilibrated with buffer 

A. The column was placed in-line with a 5600 TripleTOF mass spectrometer (Sciex) 

equipped with a nanoelectrospray ion source connected in-line to a NanoLC-Ultra 2D 

plus HPLC system (Eksigent). Buffer A was 0.1% formic acid in water; buffer B was 

0.1% formic acid in ACN. The HPLC gradient delivered an acetonitrile gradient over 120 

min (2-35% buffer B over 85 min, 40-60% buffer B over 5 min, 60-90% buffer B over 5 

min, hold buffer B at 90% 8 min, and return to 2% B at 105 min). The instrument was 

operated in the data-dependent acquisition (DDA) mode with 1 MS scan (250 ms; mass 

range 400-1250) followed by up to 20 MS/MS scans (50 ms each). Only candidate ions 

that were between 2-5 charge states were considered, and ions were dynamically 

excluded for 20 s with a 50 mDa window. The isolation width = 0.7, and minimum 

threshold = 200. 
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Luciferase assays 

In experiments with miRNA reporters, U251, HeLa and MEFs were co-transfected in a 

24-well plate with 20 ng of pGL3-E2f 3’ UTR (37), pmiRGLO-3xmiR-19 (49) and pIS1-

Hmga2 3’UTR (36), respectively. The pIS1 and pGL3 reporters were co-transfected with 

5 ng of Firefly Luciferase (FL) and Renilla Luciferase (RL) plasmids, respectively. In 

tethering experiments, shCTR or sh4EHP HEK293T cells were transfected with 50 ng 

RL-5BoxB-A114-N40-HhR, 10 ng FL and 50 ng λN-fusion constructs per well in a 24-

well plate using Lipofectamine 2000 (Thermo Scientific, 11668019) according to the 

manufacturer’s instructions. For complementation experiments, 10 ng pcDNA5-3xFlag-

4EHP (WT or Mut) were also added in these transfection mixtures. For 4EHP and 4E-T 

knockdown, 2x106 cells were plated in a 10 mm culture dish and transfected with a final 

concentration of 25 nM of siRNA duplexes using Lipofectamine 2000 according to the 

manufacturer’s instructions. After 24 h, cells were plated in a 24-well plate and 

transfected a second time with the plasmid mixture as described previously. Cells were 

lysed 24 h after transfection. Luciferase activities were measured with the Dual-

Luciferase Reporter Assay System (Promega) in a GloMax 20/20 luminometer 

(Promega). RL activity was normalized to the activity of co-expressed FL and the 

normalized RL values are shown as repression fold relative to the indicated control.  

 

 

 

 



 18 

 

Acknowledgments 

We thank Devon Merkley, Pudchalaluck Panichnantakul, and Eliana Sacher for technical 

assistance; Maayan Shapiro, Mark A. Hancock, and Nadeem Siddiqui for discussions, 

and Chris Rouya, and Masahiro Morita for reagents. T. Yamamoto (OIST, Okinawa), N. 

Gehring (EMBL, Heidelberg) and Y. Tomari (IMCB, Tokyo) are gratefully 

acknowledged for their gifts of plasmids pME18S-flag-hCNOT1, pCI-λN-V5 and 

pAWH-RL-let7-A114-N40-HhR, respectively. The pGL3-E2f-3'UTR (WT and Mut) 

vectors were a gift from Joshua Mendell (Addgene plasmids 21170 and 21171). This 

work was supported by Canadian Institute of Health Research (CIHR) grants [MOP-7214 

(to N.S.), MOP 123352 (T.F.D.)], and FDN 143301 (to A.-C.G.)], Terry Fox Research 

Institute grant TFF-122868 (to N.S.), and the National Science and Engineering Research 

Council (NSERC) grant RGPIN-2014-06434 (to A.-C.G.). T.F.D. is supported by the 

Fonds de la Recherche en Santé du Québec (FRQS), Chercheur-Boursier Senior Salary 

Award. S.M.J. is the recipient of a CIHR Postdoctoral fellowship. C.C. is supported by 

Fonds de Recherche du Québec – Santé  (FRQS) and Fondation pour la Recherche 

Médicale (FRM) postdoctoral fellowships. E.M.C. is supported by Groupe de Recherche 

Axé sur la Structure des Protéines (GRASP). G.G.H. is supported by a Basic Research 

Fellowship from Parkinson Canada. 

 

Author contributions 



 19 

C.C. and S.M.J. designed research; C.C., S.M.J., E.M.C., and G.G.H. performed 

experiments; C.C., S.M.J., E.M.C., G.G.H., I.G., J.A., T.A., C.G.G., N.S.G., and A.C.G. 

analyzed data; M.R.F. provided critical feedback on the results and model; C.C. and 

S.M.J. wrote the manuscript; T.F.D. and N.S. provided general oversight, and edited the 

manuscript. 

 

References 

 

1. Jonas S & Izaurralde E (2015) Towards a molecular understanding of microRNA-
mediated gene silencing. Nat Rev Genet 16(7):421-433. 

2. Sonenberg N & Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: 
mechanisms and biological targets. Cell 136(4):731-745. 

3. Pillai RS, et al. (2005) Inhibition of translational initiation by Let-7 MicroRNA in human 
cells. Science 309(5740):1573-1576. 

4. Mathonnet G, et al. (2007) MicroRNA inhibition of translation initiation in vitro by 
targeting the cap-binding complex eIF4F. Science 317(5845):1764-1767. 

5. Humphreys DT, Westman BJ, Martin DI, & Preiss T (2005) MicroRNAs control translation 
initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc 
Natl Acad Sci U S A 102(47):16961-16966. 

6. Braun JE, Huntzinger E, Fauser M, & Izaurralde E (2011) GW182 proteins directly recruit 
cytoplasmic deadenylase complexes to miRNA targets. Molecular cell 44(1):120-133. 

7. Chekulaeva M, et al. (2011) miRNA repression involves GW182-mediated recruitment of 
CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol 18(11):1218-
1226. 

8. Fabian MR, et al. (2011) miRNA-mediated deadenylation is orchestrated by GW182 
through two conserved motifs that interact with CCR4-NOT. Nat Struct Mol Biol 
18(11):1211-1217. 

9. Ozgur S, et al. (2015) Structure of a Human 4E-T/DDX6/CNOT1 Complex Reveals the 
Different Interplay of DDX6-Binding Proteins with the CCR4-NOT Complex. Cell Rep 
13(4):703-711. 

10. Waghray S, Williams C, Coon JJ, & Wickens M (2015) Xenopus CAF1 requires NOT1-
mediated interaction with 4E-T to repress translation in vivo. RNA 21(7):1335-1345. 

11. Kamenska A, et al. (2014) Human 4E-T represses translation of bound mRNAs and 
enhances microRNA-mediated silencing. Nucleic Acids Res 42(5):3298-3313. 

12. Kamenska A, et al. (2016) The DDX6-4E-T interaction mediates translational repression 
and P-body assembly. Nucleic Acids Res 44(13):6318-6334. 

13. Nishimura T, et al. (2015) The eIF4E-Binding Protein 4E-T Is a Component of the mRNA 
Decay Machinery that Bridges the 5' and 3' Termini of Target mRNAs. Cell Rep 
11(9):1425-1436. 



 20 

14. Chen Y, et al. (2014) A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal 
direct links between miRNA target recognition and silencing. Mol Cell 54(5):737-750. 

15. Mathys H, et al. (2014) Structural and biochemical insights to the role of the CCR4-NOT 
complex and DDX6 ATPase in microRNA repression. Molecular cell 54(5):751-765. 

16. Rouya C, et al. (2014) Human DDX6 effects miRNA-mediated gene silencing via direct 
binding to CNOT1. Rna 20(9):1398-1409. 

17. Dostie J, Ferraiuolo M, Pause A, Adam SA, & Sonenberg N (2000) A novel shuttling 
protein, 4E-T, mediates the nuclear import of the mRNA 5' cap-binding protein, eIF4E. 
EMBO J 19(12):3142-3156. 

18. Joshi B, Cameron A, & Jagus R (2004) Characterization of mammalian eIF4E-family 
members. Eur J Biochem 271(11):2189-2203. 

19. Rom E, et al. (1998) Cloning and characterization of 4EHP, a novel mammalian eIF4E-
related cap-binding protein. J Biol Chem 273(21):13104-13109. 

20. Wilhelm M, et al. (2014) Mass-spectrometry-based draft of the human proteome. 
Nature 509(7502):582-587. 

21. Kubacka D, et al. (2013) Investigating the consequences of eIF4E2 (4EHP) interaction 
with 4E-transporter on its cellular distribution in HeLa cells. PLoS One 8(8):e72761. 

22. Zuberek J, et al. (2007) Weak binding affinity of human 4EHP for mRNA cap analogs. 
RNA 13(5):691-697. 

23. von Stechow L, et al. (2015) The E3 ubiquitin ligase ARIH1 protects against genotoxic 
stress by initiating a 4EHP-mediated mRNA translation arrest. Mol Cell Biol 35(7):1254-
1268. 

24. Okumura F, Zou W, & Zhang DE (2007) ISG15 modification of the eIF4E cognate 4EHP 
enhances cap structure-binding activity of 4EHP. Genes Dev 21(3):255-260. 

25. Cho PF, et al. (2005) A new paradigm for translational control: inhibition via 5'-3' mRNA 
tethering by Bicoid and the eIF4E cognate 4EHP. Cell 121(3):411-423. 

26. Cho PF, et al. (2006) Cap-dependent translational inhibition establishes two opposing 
morphogen gradients in Drosophila embryos. Curr Biol 16(20):2035-2041. 

27. Villaescusa JC, et al. (2009) Cytoplasmic Prep1 interacts with 4EHP inhibiting Hoxb4 
translation. PLoS One 4(4):e5213. 

28. Morita M, et al. (2012) A novel 4EHP-GIGYF2 translational repressor complex is essential 
for mammalian development. Mol Cell Biol 32(17):3585-3593. 

29. Fu R, Olsen MT, Webb K, Bennett EJ, & Lykke-Andersen J (2016) Recruitment of the 
4EHP-GYF2 cap-binding complex to tetraproline motifs of tristetraprolin promotes 
repression and degradation of mRNAs with AU-rich elements. Rna 22(3):373-382. 

30. Uniacke J, et al. (2012) An oxygen-regulated switch in the protein synthesis machinery. 
Nature 486(7401):126-129. 

31. Roux KJ, Kim DI, Raida M, & Burke B (2012) A promiscuous biotin ligase fusion protein 
identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196(6):801-
810. 

32. Teo G, et al. (2014) SAINTexpress: improvements and additional features in Significance 
Analysis of INTeractome software. J Proteomics 100:37-43. 

33. Richter JD & Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E 
inhibitory proteins. Nature 433(7025):477-480. 

34. Marnef A & Standart N (2010) Pat1 proteins: a life in translation, translation repression 
and mRNA decay. Biochem Soc Trans 38(6):1602-1607. 

35. Barisic-Jager E, Krecioch I, Hosiner S, Antic S, & Dorner S (2013) HPat a decapping 
activator interacting with the miRNA effector complex. PLoS One 8(8):e71860. 



 21 

36. Mayr C, Hemann MT, & Bartel DP (2007) Disrupting the pairing between let-7 and 
Hmga2 enhances oncogenic transformation. Science 315(5818):1576-1579. 

37. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, & Mendell JT (2005) c-Myc-regulated 
microRNAs modulate E2F1 expression. Nature 435(7043):839-843. 

38. Baron-Benhamou J, Gehring NH, Kulozik AE, & Hentze MW (2004) Using the lambdaN 
peptide to tether proteins to RNAs. Methods Mol Biol 257:135-154. 

39. Fukaya T & Tomari Y (2012) MicroRNAs mediate gene silencing via multiple different 
pathways in drosophila. Molecular cell 48(6):825-836. 

40. Haghighat A & Sonenberg N (1997) eIF4G dramatically enhances the binding of eIF4E to 
the mRNA 5'-cap structure. J Biol Chem 272(35):21677-21680. 

41. Kahvejian A, Roy G, & Sonenberg N (2001) The mRNA closed-loop model: the function of 
PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harb Symp Quant 
Biol 66:293-300. 

42. Chapat C & Corbo L (2014) Novel roles of the CCR4-NOT complex. Wiley Interdiscip Rev 
RNA 5(6):883-901. 

43. Ash MR, et al. (2010) Conserved beta-hairpin recognition by the GYF domains of Smy2 
and GIGYF2 in mRNA surveillance and vesicular transport complexes. Structure 
18(8):944-954. 

44. Ajiro M, et al. (2009) Involvement of RQCD1 overexpression, a novel cancer-testis 
antigen, in the Akt pathway in breast cancer cells. Int J Oncol 35(4):673-681. 

45. Kryszke MH, Adjeriou B, Liang F, Chen H, & Dautry F (2016) Post-transcriptional gene 
silencing activity of human GIGYF2. Biochem Biophys Res Commun 475(3):289-294. 

46. Bethune J, Artus-Revel CG, & Filipowicz W (2012) Kinetic analysis reveals successive 
steps leading to miRNA-mediated silencing in mammalian cells. EMBO Rep 13(8):716-
723. 

47. Djuranovic S, Nahvi A, & Green R (2012) miRNA-mediated gene silencing by translational 
repression followed by mRNA deadenylation and decay. Science 336(6078):237-240. 

48. Zekri L, Kuzuoglu-Ozturk D, & Izaurralde E (2013) GW182 proteins cause PABP 
dissociation from silenced miRNA targets in the absence of deadenylation. EMBO J 
32(7):1052-1065. 

49. Mayya VK & Duchaine TF (2015) On the availability of microRNA-induced silencing 
complexes, saturation of microRNA-binding sites and stoichiometry. Nucleic Acids Res 
43(15):7556-7565. 

50. Reimand J, et al. (2016) g:Profiler-a web server for functional interpretation of gene lists 
(2016 update). Nucleic Acids Res 44(W1):W83-89. 

 

 

 

 



 22 

Figure legends: 

Table 1: Thermodynamic parameters for the interaction of eIF4E and 4EHP with m7GTP 

in presence of 4E-T peptides, as determined by Isothermal Titration Calorimetry (ITC).  

See Fig. S4A for a schematic description of the peptides. 

Fig. 1: Proteomic identification of the 4EHP and eIF4E proximal proteins. (A) High 

confidence protein interactions discovered by BioID for the indicated baits in HEK293 

cells. CT (C-terminal) and NT (N-terminal) indicate the location of BirA* fusion protein 

in relation to the Bait protein. Average of two independent experiments for each tagged 

variant is presented. Interacting proteins were categorized according to their known 

functions. Avg-Spec shows the spectral counts for each indicated prey. BFDR: Bayesian 

False Discovery Rate. Complete list of the proximal proteins for each bait is presented in 

Dataset S1. (B) Gene ontology (GO) analysis of the BirA*-4EHP proximal proteins. Ten 

most significantly enriched biological processes identified using prohits-viz.lunenfeld.ca 

running g:Profiler (50) software are presented. Complete list of the enriched biological 

processes and molecular pathways is presented in Dataset S2. (C) HEK293T cells were 

transiently transfected with control or 3xFlag-4EHP plasmids. Two days later, 

cytoplasmic-cell lysate was immunoprecipitated using anti-Flag antibody in the presence 

of RNaseA. Western blot was performed using the specified antibodies. LE: long 

exposure; SE: short exposure. (D) Cytoplasmic-cell lysate from HEK293T cells was 

immunoprecipitated using anti-DDX6 or IgG antibodies. Western blot was performed 

using the specified antibodies. (E) HEK293T cells were transiently transfected with 

control or HA-PATL1 plasmid. Two days later, cytoplasmic-cell lysate was 
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immunoprecipitated using anti-HA antibody. Western blot was performed using the 

specified antibodies. 

 Fig. 2: 4EHP depletion impairs miRISC/CCR4-NOT-mediated translational 

silencing.  (A) Top; Schematic representation of the RL-Hmga2 3´ UTR reporter. Bottom; 

WT and 4EHP-KO MEFs were co-transfected with RL-Hmga2 3´ UTR (WT) or (Mut), 

along with Firefly Luciferase. Luciferase activity was measured 24 h after transfection. 

Renilla values were normalized against Firefly levels, and repression fold was calculated 

for the RL-Hmga2 3´ UTR (WT) relative to RL-Hmga2 3´ UTR (Mut) level for each 

population. The same data are shown as relative RL/FL levels in Fig. S2B. (B) Top; 

Schematic representation of the FL-E2f 3´ UTR reporter. Bottom; Repression of FL-E2f 

3´ UTR reporter in shCTR and sh4EHP U251 cells. U251 cells were co-transfected with 

pGL3-FL-E2f 3´ UTR (WT) or (Mut), along with Renilla Luciferase. Luciferase activity 

was measured 24 h after transfection. Firefly values were normalized against Renilla 

levels, and repression fold was calculated for the FL-E2f 3´ UTR (WT) relative to FL-E2f 

3´ UTR (Mut) level for each population. (C) Schematic diagram of full-length CNOT1 

and the N-terminal, middle and C-terminal fragments used in 2D. The binding partners in 

CNOT1 are also depicted for each domain. (D) Top; Vectors expressing V5-CNOT1 and 

3xFlag-4EHP (or control plasmid) were transfected into HEK293T cells. IP of V5-

CNOT1 from RNaseA-treated extracts was performed using anti-V5 antibody. Purified 

proteins were analyzed by western blot with indicated antibodies. Bottom; HEK293T 

cells were transfected by vectors expressing V5-CNOT1 fragments (as described in 2C; 

N, N-terminal region (AA: 1-690); M, middle repressive module (AA: 1030-1600) and C, 

C-terminal region (AA: 1830-2376)) and 3xFlag-4EHP. Extracts were subjected to anti-
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V5 IP, and the eluted fractions were analyzed by western blot with indicated antibodies. 

(E) 4EHP-mediates translational repression by tethered CNOT1 and GW182(SD). Top; 

Schematic representation of the RL-5boxB-A114-N40-HhR reporter. Control HEK293T 

cells (shCTR) or cells depleted of 4EHP (sh4EHP) were co-transfected with vectors 

expressing either λN-CNOT1, λN-GW182(SD) or λN control, along with RL-5boxB-

A114-N40-HhR or RL-A114-N40-HhR, and Firefly Luciferase. RL luminescence was 

normalized against Firefly Luciferase level. Repression fold of RL-5boxB-A114-N40-HhR 

relative to RL-A114-N40-HhR expression is shown (bottom). Repression level of RL-

5boxB-A114-N40-HhR by λN alone in shCTR cells was set as 1. (F) Rescue assay for λN-

CNOT1-dependent silencing was performed, as described in E, in cells depleted of 

4EHP. shCTR and sh4EHP HEK293T cells were transfected with the indicated plasmids 

in combination with constructs expressing shRNA-resistant versions of either 3xFlag-

4EHP (WT), 3xFlag-4EHPW124A cap-binding mutant (Mut) or empty vector (EV). The 

experiments illustrated in A, B,  E and F are represented as mean values (± SD) of three 

independent experiments. The P value was determined by two-tailed Student's t‐test: (ns) 

non-significant, (*) P < 0.05; (**) P < 0.01; (***) P < 0.001.  

Fig. 3: 4EHP competes with eIF4E for binding to 4E-T. (A) HEK293T cells were 

transfected with vectors expressing HA-tagged WT 4E-T or the eIF4E/4EHP-binding 

mutant variants and 3xFlag-4EHP (or control vector). Lysates were immunoprecipitated 

using the anti-HA antibody. Western blot was performed using the specified antibodies. 

(B) HEK293T cells were transfected with vectors expressing HA-4E-T and increasing 

amount of 3xFlag-4EHP. Anti-HA IP and western blot were performed as described in A. 

(C) Binding assays with 4E-T/4EHP and 4E-T/eIF4E complexes. Constant amounts of 
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the HA-4E-T-bound beads were incubated with increasing concentrations of recombinant 

His-4EHP or His-eIF4E (0, 0.03, 0.06, 0.12, 0.25, 0.5 and 1 µM). After washing the 

beads, the retained complexes were eluted and analysed by western blotting with anti-His 

and anti-HA antibodies. (D) Top; For in vitro displacement assay, preassembled eIF4E–

4E-T complexes bound on anti-HA agarose beads were incubated with increasing 

amounts of 4EHP (0, 0.11, 0.22, 0.44, 0.89, 1.78 µM). Proteins were eluted and analysed 

by western blot with the indicated antibodies. Bottom; Bar graph, obtained by 

densitometry analysis of western blot data, shows quantified intensities of eIF4E and 

4EHP signals normalized against 4E-T. The data are expressed as mean values (± SD) of 

two independent experiments.   

 Fig. 4: Model of 4EHP-mediated translation repression by miRNAs. The recruitment 

of 4EHP to the miRNA target mRNA through the CCR4-NOT/DDX6/4E-T axis 

promotes its binding to the cap. The assembly of this complex is likely to initiate the 

formation of a closed loop structure (right panel) resembling the cap-to-tail closed-loop 

mRNA conformation involving eIF4G/PABP interaction (left panel). 
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