8 research outputs found
Undulation instability in a bilayer lipid membrane due to electric field interaction with lipid dipoles
Bilayer lipid membranes [BLMs] are an essential component of all biological
systems, forming a functional barrier for cells and organelles from the
surrounding environment. The lipid molecules that form membranes contain both
permanent and induced dipoles, and an electric field can induce the formation
of pores when the transverse field is sufficiently strong (electroporation).
Here, a phenomenological free energy is constructed to model the response of a
BLM to a transverse static electric field. The model contains a continuum
description of the membrane dipoles and a coupling between the headgroup
dipoles and the membrane tilt. The membrane is found to become unstable through
buckling modes, which are weakly coupled to thickness fluctuations in the
membrane. The thickness fluctuations, along with the increase in interfacial
area produced by membrane buckling, increase the probability of localized
membrane breakdown, which may lead to pore formation. The instability is found
to depend strongly on the strength of the coupling between the dipolar
headgroups and the membrane tilt as well as the degree of dipolar ordering in
the membrane.Comment: 29 pages 8 fig
Recommended from our members
Materials for phantoms for terahertz pulsed imaging
Phantoms are commonly used in medical imaging for quality assurance, calibration, research and teaching. They may include test patterns or simulations of organs, but in either case a tissue substitute medium is an important component of the phantom. The aim of this work was to identify materials suitable for use as tissue substitutes for the relatively new medical imaging modality terahertz pulsed imaging. Samples of different concentrations of the candidate materials TX151 and napthol green dye were prepared, and measurements made of the frequency-dependent absorption coefficient (0.5 to 1.5 THz) and refractive index (0.5 to 1.0 THz). These results were compared qualitatively with measurements made in a similar way on samples of excised human tissue (skin, adipose tissue and striated muscle). Both materials would be suitable for phantoms where the dominant mechanism to be simulated is absorption (similar to ∼100 cm(-1) at 1 THz) and where simulation of the strength of reflections from boundaries is not important; for example, test patterns for spatial resolution measurements. Only TX151 had a frequency-dependent refractive index close to that of tissue, and could therefore be used to simulate the layered structure of skin, the complexity of microvasculature or to investigate frequency-dependent interference effects that have been noted in terahertz images
Data from: Drug delivery in a tumour cord model: a computational simulation
The tumour vasculature and microenvironment is complex and heterogeneous, contributing to reduced delivery of cancer drugs to the tumour. We have developed an in silico model of drug transport in a tumour cord to explore the effect of different drug regimes over a 72 h period and how changes in pharmacokinetic parameters affect tumour exposure to the cytotoxic drug doxorubicin. We used the model to describe the radial and axial distribution of drug in the tumour cord as a function of changes in the transport rate across the cell membrane, blood vessel and intercellular permeability, flow rate, and the binding and unbinding ratio of drug within the cancer cells. We explored how changes in these parameters may affect cellular exposure to drug. The model demonstrates the extent to which distance from the supplying vessel influences drug levels and the effect of dosing schedule in relation to saturation of drug-binding sites. It also shows the likely impact on drug distribution of the aberrant vasculature seen within tumours. The model can be adapted for other drugs and extended to include other parameters. The analysis confirms that computational models can play a role in understanding novel cancer therapies to optimize drug administration and delivery
NMR data of Water in Aggrecan solutions
NMR data of water in Aggrecan solutions in raw data format from both Bruker NMR (Avance II) and Maran NMR. Range of concentrations on both instruments. A ReadMe file is contained within each dataset for additional guidance and identification
RSOS_Code
Matlab code used to produce model results for paper
Neurodegenerative disease of the brain: a survey of interdisciplinary approaches.
Neurodegenerative diseases of the brain pose a major and increasing global health challenge, with only limited progress made in developing effective therapies over the last decade. Interdisciplinary research is improving understanding of these diseases and this article reviews such approaches, with particular emphasis on tools and techniques drawn from physics, chemistry, artificial intelligence and psychology