49 research outputs found

    Techniques for Achieving Zero Stress in Thin Films of Iridium, Chromium, and Nickel

    Get PDF
    We examine techniques for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The intrinsic stress is further correlated to the microstructural features and physical properties such as surface roughness and optical density at a scale appropriate to soft X-ray wavelengths. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight X-ray space telescopes into the regime of sub-arcsecond resolution through various deposition techniques that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure and deposition rate, including the existence of a critical argon process pressure that results in zero film stress which scales linearly with the atomic mass of the sputtered species. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we report this effect for iridium. In addition to stress reversal, we identify zero stress in the optical functioning iridium layer shortly after island coalescence for low process pressures at a film thickness of approximately 35nm. The measurement of the low values of stress during deposition was achieved with the aid of a sensitive in-situ instrument capable of a minimum detectable level of stress, assuming a 35nm thick film, in the range of 0.40-6.0 MPa for oriented crystalline silicon substrate thicknesses of 70-280 microns, respectively

    Achieving Zero Stress in Iridium, Chromium, and Nickel Thin Films

    Get PDF
    We examine a method for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight x-ray space telescopes into the regime of sub-arc second resolution that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure, including the existence of a critical pressure that results in zero film stress. This critical pressure scales linearly with the film's density. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we have discovered a similar behavior for iridium. Additionally, we have identified zero stress in iridium shortly after island coalescence. This feature of film growth is used for achieving a total internal stress of -2.89 MPa for a 15.8 nm thick iridium film. The surface roughness of this low-stress film was examined using scanning probe microscopy (SPM) and x-ray reflectivity (XRR) at CuK and these results presented and discussed

    Characterization of a recurrent missense mutation in the forkhead DNA-binding domain of \u3ci\u3eFOXP1\u3c/i\u3e

    Get PDF
    Haploinsufficiency of Forkhead box protein P1 (FOXP1), a highly conserved transcription factor, leads to developmental delay, intellectual disability, autism spectrum disorder, speech delay, and dysmorphic features. Most of the reported FOXP1 mutations occur on the C-terminus of the protein and cluster around to the forkhead domain. All reported FOXP1 pathogenic variants result in abnormal cellular localization and loss of transcriptional repression activity of the protein product. Here we present three patients with the same FOXP1 mutation, c.1574G\u3eA (p.R525Q), that results in the characteristic loss of transcription repression activity. This mutation, however, represents the first reported FOXP1 mutation that does not result in cytoplasmic or nuclear aggregation of the protein but maintains normal nuclear localization

    Disconnected submarine lobes as a record of stepped slope evolution over multiple sea-level cycles

    Get PDF
    The effects of abrupt changes in slope angle and orientation on turbidity current behavior have been investigated in numerous physical and numerical experiments and examined in outcrop, subsurface, and modern systems. However, the long-term impact of subtle and evolving seabed topography on the stratigraphic architecture of deep-water systems requires fine-scale observations and extensive 3-D constraints. This study focuses on the Permian Laingsburg and Fort Brown formations, where multiple large sand-rich systems (Units A–F) have been mapped from entrenched slope valleys, through channel-levee systems, to basin-floor lobe complexes over a 2500 km2 area. Here, we investigate three thinner (typically <5 m in thickness) and less extensive sand-rich packages, Units A/B, B/C, and D/E, between the large-scale systems. Typically, these sand-rich units are sharp-based and topped, and contain scours and mudstone clast conglomerates that indicate deposition from high-energy turbidity currents. The mapped thickness and facies distribution suggest a lobate form. These distinctive units were deposited in similar spatial positions within the basin-fill and suggest similar accommodation patterns on the slope and basin floor prior to the larger systems (B, C, and E). Stratigraphically, these thin units represent the first sand deposition following ­major periods of shut-down in sediment supply, and are interpreted as marking a partial re-establishment of sand delivery pathways creating “disconnected lobes” that are fed mainly by flows sourced from failures on the shelf and upper slope rather than major feeder channel-levee systems. Thickness and facies patterns throughout the deep-water stratigraphy suggest seabed topography was present early in the basin formation and maintained persistently in a similar area to ultimately form a stepped slope profile. The stepped slope profile evolved through three key stages of development: Phase 1, where sediment supply exceeds deformation rate (likely caused by differential subsidence); Phase 2, where sediment supply is on average equal to deformation rate; and Phase 3, where deformation rate outpaces sediment supply. This study demonstrates that smaller systems are a sensitive record of evolving seabed topography and they can consequently be used to recreate more accurate paleotopographic profiles

    Mudança científica: modelos filosóficos e pesquisa histórica

    Full text link

    Characterization of a recurrent missense mutation in the forkhead DNA-binding domain of \u3ci\u3eFOXP1\u3c/i\u3e

    Get PDF
    Haploinsufficiency of Forkhead box protein P1 (FOXP1), a highly conserved transcription factor, leads to developmental delay, intellectual disability, autism spectrum disorder, speech delay, and dysmorphic features. Most of the reported FOXP1 mutations occur on the C-terminus of the protein and cluster around to the forkhead domain. All reported FOXP1 pathogenic variants result in abnormal cellular localization and loss of transcriptional repression activity of the protein product. Here we present three patients with the same FOXP1 mutation, c.1574G\u3eA (p.R525Q), that results in the characteristic loss of transcription repression activity. This mutation, however, represents the first reported FOXP1 mutation that does not result in cytoplasmic or nuclear aggregation of the protein but maintains normal nuclear localization
    corecore