5 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Purification and characterization of a novel calcium binding protein from the extrapallial fluid of mollusc Mytilus edulis

    No full text
    In the bivalve mollusc Mytilus edulis shell thickening occurs from the extrapallial (EP) fluid wherein secreted shell matrix macromolecules are thought to self-assemble into a framework that regulates the growth of CaCO3 crystals, which eventually constitute ∼95% of the mature shell. Herein is the initial report on the purification and characterization of a novel EP fluid glycoprotein, which is likely a building block of the shell-soluble organic matrix. This primary EP fluid protein comprises 56% of the total protein in the fluid and is shown to be a dimer of 28,340 Da monomers estimated to be 14.3% by weight carbohydrate. The protein is acidic (pI = 4.43) and rich in histidine content (11.14%) as well as in Asx and Glx residues (25.15% total). The N terminus exhibits an unusual repeat sequence of histidine and aspartate residues that occur in pairs: NPVDDHHDDHHDAPIVEHHD∼. Ultracentrifugation and polyacrylamide gel electrophoresis demonstrate that the protein binds calcium and in so doing assembles into a series of higher order protomers, which appear to have extended structures. Circular dichroism shows that the protein-calcium binding/protomer formation is coupled to a significant rearrangement in the protein\u27s secondary structure in which there is a major reduction in β-sheet with an associated increase in α-helical content of the protein. A model for shell organic matrix self-assembly is proposed

    Bifunctional Glass Membrane Designed to Interface SDS-PAGE Separations of Proteins with the Detection of Peptides by Mass Spectrometry

    No full text
    We describe the construction and characterization of a novel membrane designed to allow proteins separated by gel electrophoresis (SDS-PAGE) to be detected as peptides by mass spectrometry in an efficient and comprehensive manner. The key attribute of the membrane is a bifunctional design that allows for the digestion of protein(s) and retention of the resulting peptides with minimal lateral diffusion. Silane chemistries are used to differentially treat the opposing surfaces of a glass filter paper to enable this unique capability
    corecore