47 research outputs found
Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression
Background: This report provides histopathological evidence to support prior neuroimaging findings of decreased volume and altered metabolism in the frontal cortex in major depressive disorder. Methods: Computer-assisted three-dimensional cell counting was used to reveal abnormal cytoarchitecture in left rostral and caudal orbitofrontal and dorsolateral prefrontal cortical regions in subjects with major depression as compared to psychiatrically normal controls. Results: Depressed subjects had decreases in cortical thickness, neuronal sizes, and neuronal and glial densities in the upper (II–IV) cortical layers of the rostral orbitofrontal region. In the caudal orbitofrontal cortex in depressed subjects, there were prominent reductions in glial densities in the lower (V–VI) cortical layers that were accompanied by small but significant decreases in neuronal sizes. In the dorsolateral prefrontal cortex of depressed subjects marked reductions in the density and size of neurons and glial cells were found in both supra- and infragranular layers. Conclusions: These results reveal that major depression can be distinguished by specific histopathology of both neurons and glial cells in the prefrontal cortex. Our data will contribute to the interpretation of neuroimaging findings and identification of dysfunctional neuronal circuits in major depression
The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum
The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders
UAS Chromatograph for Atmospheric Trace Species (UCATS) – a versatile instrument for trace gas measurements on airborne platforms
UCATS (the UAS Chromatograph for Atmospheric Trace Species) was designed and built for observations of important atmospheric trace gases from unmanned aircraft systems (UAS) in the upper troposphere and lower stratosphere (UTLS). Initially it measured major chlorofluorocarbons (CFCs) and the stratospheric transport tracers nitrous oxide (N2O) and sulfur hexafluoride (SF6), using gas chromatography with electron capture detection. Compact commercial absorption spectrometers for ozone (O3) and water vapor (H2O) were added to enhance its capabilities on platforms with relatively small payloads. UCATS has since been reconfigured to measure methane (CH4), carbon monoxide (CO), and molecular hydrogen (H2) instead of CFCs and has undergone numerous upgrades to its subsystems. It has served as part of large payloads on stratospheric UAS missions to probe the tropical tropopause region and transport of air into the stratosphere; in piloted aircraft studies of greenhouse gases, transport, and chemistry in the troposphere; and in 2021 is scheduled to return to the study of stratospheric ozone and halogen compounds, one of its original goals. Each deployment brought different challenges, which were largely met or resolved. The design, capabilities, modifications, and some results from UCATS are shown and described here, including changes for future missions.Support was provided for HIPPO by NSF award no. AGS-0628452, for ATTREX by NASA Earth Venture program award no. NNA11AA55I, and for ATom by NASA award no. NNH17AE26I; additional support was provided by NASA Upper Atmosphere Research Program award no. NNH13AV69I. This work was also supported in part by the NOAA Cooperative Agreement with CIRES, NA17OAR4320101
Corporate Campaign Contributions as a Predictor for Abnormal Stock Returns After Presidential Elections
Contributions by investor-owned companies play major roles in financing the campaigns of candidates for elective office in the United States. We look at the presidential level and analyze contributions by companies before an election and their stock market performance following US presidential elections from 1992 to 2004. We find that companies experienced abnormal positive post-election returns with (i) a higher percentage of contributions given to the eventual winner and (ii) with a higher total contribution given. Hypothetical portfolios of the 30 largest corporate contributors formed according to (i) the percentage of contributions given to the winner in a presidential election and (ii) the total contribution (divided by market capitalization) would have earned significant abnormal returns in the two years after an election. While all results hold for Bill Clinton and George W. Bush, they are stronger by a magnitude of two to three under W. Bush
A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes
dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe
Using theories of action to guide national program evaluation and local strategy in the community care network demonstration
Evaluations of multisite community-based projects are notoriously difficult to conceptualize and conduct. Projects may share an overarching vision but operate in varying contexts and pursue different initiatives. One tool that can assist evaluators facing these challenges is to developa theory of action (TOA) that identifies critical assumptions regarding how a program expects to achieve its goals. Community Care Network (CCN) evaluators used the TOA to refine research questions, define key variables, relate questions to each other, and identify when we might realistically expect to observe answers. In this article, the authors present their national-level CCN TOA. They also worked with sites to helpthem surface their local TOA; the article analyzes the results to determine the content, clarity, extent of evidence base, and strategic orientation of theories articulated by different sites
Effect of estrogen on pseudomonas mucoidy and exacerbations in cystic fibrosis
BACKGROUND: Women with cystic fibrosis are at increased risk for mucoid conversion of Pseudomonas aeruginosa, which contributes to a sexual dichotomy in disease severity.METHODS: We evaluated the effects of estradiol and its metabolite estriol on P. aeruginosa in vitro and in vivo and determined the effect of estradiol on disease exacerbations in women with cystic fibrosis.RESULTS: Estradiol and estriol induced alginate production in P. aeruginosa strain 01 and in clinical isolates obtained from patients with and those without cystic fibrosis. After prolonged exposure to estradiol, P. aeruginosa adopted early mucoid morphology, whereas short-term exposure inhibited bacterial catalase activity and increased levels of hydrogen peroxide, which is potentially damaging to DNA. Consequently, a frameshift mutation was identified in mucA, a key regulator of alginate biosynthesis in P. aeruginosa. In vivo levels of estradiol correlated with infective exacerbations in women with cystic fibrosis, with the majority occurring during the follicular phase (P<0.05). A review of the Cystic Fibrosis Registry of Ireland revealed that the use of oral contraceptives was associated with a decreased need for antibiotics. Predominantly nonmucoid P. aeruginosa was isolated from sputum during exacerbations in the luteal phase (low estradiol). Increased proportions of mucoid bacteria were isolated during exacerbations occurring in the follicular phase (high estradiol), with a variable P. aeruginosa phenotype evident in vivo during the course of the menstrual cycle corresponding to fluctuating estradiol levels.CONCLUSIONS: Estradiol and estriol induced mucoid conversion of P. aeruginosa in women with cystic fibrosis through a mutation of mucA in vitro and were associated with selectivity for mucoid isolation, increased exacerbations, and mucoid conversion in vivo. (Funded by the Molecular Medicine Ireland Clinician-Scientist Fellowship Programme)
Association of Antibiotics, Airway Microbiome, and Inflammation in Infants with Cystic Fibrosis
RATIONALE:
The underlying defect in the cystic fibrosis (CF) airway leads to defective mucociliary clearance and impaired bacterial killing, resulting in endobronchial infection and inflammation that contributes to progressive lung disease. Little is known about the respiratory microbiota in the early CF airway and its relationship to inflammation.
OBJECTIVES:
To examine the bacterial microbiota and inflammatory profiles in bronchoalveolar lavage fluid and oropharyngeal secretions in infants with CF.
METHODS:
Infants with CF from U.S. and Australian centers were enrolled in a prospective, observational study examining the bacterial microbiota and inflammatory profiles of the respiratory tract. Bacterial diversity and density (load) were measured. Lavage samples were analyzed for inflammatory markers (interleukin 8, unbound neutrophil elastase, and absolute neutrophil count) in the epithelial lining fluid.
RESULTS:
Thirty-two infants (mean age, 4.7 months) underwent bronchoalveolar lavage and oropharyngeal sampling. Shannon diversity strongly correlated between upper and lower airway samples from a given subject, although community compositions differed. Microbial diversity was lower in younger subjects and in those receiving daily antistaphylococcal antibiotic prophylaxis. In lavage samples, reduced diversity correlated with lower interleukin 8 concentration and absolute neutrophil count.
CONCLUSIONS:
In infants with CF, reduced bacterial diversity in the upper and lower airways was strongly associated with the use of prophylactic antibiotics and younger age at the time of sampling; less diversity in the lower airway correlated with lower inflammation on bronchoalveolar lavage. Our findings suggest modification of the respiratory microbiome in infants with CF may influence airway inflammation